Archive for Rational Mechanics and Analysis

, Volume 229, Issue 3, pp 1153–1195 | Cite as

A REBO-Potential-Based Model for Graphene Bending by \({{\Gamma}}\)-Convergence

  • Cesare Davini
  • Antonino Favata
  • Roberto Paroni


We present an atomistic to continuum model for a graphene sheet undergoing bending, within the small displacements approximation framework. Under the assumption that the atomic interactions are governed by a harmonic approximation of the 2nd-generation Brenner REBO (reactive empirical bond-order) potential, involving the first, second and third nearest neighbors of any given atom, we determine the variational limit of the energy functionals. It turns out that the \({\Gamma}\)-limit depends on the linearized mean and Gaussian curvatures. If some specific contributions in the atomic interaction are neglected, the variational limit is non-local.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akinwande, D., Brennan, C.J., Bunch, J.S., Egberts, P., Felts, J.R., Gao, H., Huang, R., Kim, J.-S., Li, T., Li, Y., Liechti, K.M., Lu, N., Park, H.S., Reed, E.J., Wang, P., Yakobson, B.I., Zhang, T., Zhang, Y.-W., Zhou, Y., Zhu, Y.: A review on mechanics and mechanical properties of 2d materials–graphene and beyond. Extr. Mech. Lett. 13, 42–77 (2017)CrossRefGoogle Scholar
  2. 2.
    Alessi, R., Favata, A., Micheletti, A.: Pressurized CNTs under tension: a finite-deformation lattice model. Compos. B Eng. 115, 223–235 (2017)CrossRefGoogle Scholar
  3. 3.
    Arroyo, M., Belytschko, T.: An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solids 50(9), 1941–1977 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arroyo, M., Belytschko, T.: Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys. Rev. B 69, 115415 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42(15), (1990)Google Scholar
  6. 6.
    Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., Sinnott, S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Cond. Matter 14(4), 783 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Cadelano, E., Palla, P.L., Giordano, S., Colombo, L.: Nonlinear elasticity of monolayer graphene. Phys. Rev. Lett. 102, 235502 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Davini, C.: Homogenization of a graphene sheet. Cont. Mech. Thermodyn. 26(1), 95–113 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Davini, C., Favata, A., Micheletti, A., Paroni, R.: A 2D microstructure with auxetic out-of-plane behavior and non-auxetic in-plane behavior. Smart Mater. Struct. 26(12), 125007 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Davini, C., Favata, A., Paroni, R.: A new material property of graphene: the bending Poisson coefficient. Europhys. Lett. 118, 26001 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Davini, C., Favata, A., Paroni, R.: The Gaussian stiffness of graphene deduced from a continuum model based on molecular dynamics potentials. J. Mech. Phys. Solids 104, 96–114 (2017)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Favata, A., Micheletti, A., Podio-Guidugli, P., Pugno, N.M.: Geometry and self-stress of single-wall carbon nanotubes and graphene via a discrete model based on a 2nd-generation REBO potential. J. Elasticity 125, 1–37 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Favata, A., Micheletti, A., Podio-Guidugli, P., Pugno, N.M.: How graphene flexes and stretches under concomitant bending couples and tractions. Meccanica 52, 1601–1624 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Favata, A., Micheletti, A., Ryu, S., Pugno, N.M.: An analytical benchmark and a Mathematica program for MD codes: testing LAMMPS on the 2nd generation Brenner potential. Comput. Phys. Commun. 207, 426–431 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Ferrari, A.C., Bonaccorso, F., Fal’ko, V., Novoselov, K.S., Roche, S., Bøggild, P., Borini, S., Koppens, F.H.L., Palermo, V., Pugno, N.M., Garrido, J.A., Sordan, R., Bianco, A., Ballerini, L., Prato, M., Lidorikis, E., Kivioja, J., Marinelli, C., Ryhänen, T., Morpurgo, A., Coleman, J.N., Nicolosi, V., Colombo, L., Fert, A., Garcia-Hernandez, M., Bachtold, A., Schneider, G.F., Guinea, F., Dekker, C., Barbone, M., Sun, Z., Galiotis, C., Grigorenko, A.N., Konstantatos, G., Kis, A., Katsnelson, M., Vandersypen, L., Loiseau, A., Morandi, V., Neumaier, D., Treossi, E., Pellegrini, V., Polini, M., Tredicucci, A., Williams, G.M., Hee Hong, B., Ahn, J.-H., Min Kim, J., Zirath, H., van Wees, B.J., van der Zant, H., Occhipinti, L., Di Matteo, A., Kinloch, I.A., Seyller, T., Quesnel, E., Feng, K., Teo, X., Rupesinghe, N., Hakonen, P., Neil, S.R.T., Tannock, Q., Löfwander, T., Kinaret, J.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11), 4587–5062 (2015)CrossRefGoogle Scholar
  16. 16.
    Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: \({{C}}_{2}{F}\), BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Le Dret, H., Raoult, A.: Homogenization of hexagonal lattices [homogénéisation d’un réseau hexagonal]. C. R. Math. 349(1–2), 111–114 (2011)CrossRefzbMATHGoogle Scholar
  18. 18.
    Le Dret, H., Raoult, A.: Homogenization of hexagonal lattices. Netw. Heterogeneous Media 8(2), 541–572 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Le Dret, H., Raoult, A.: Hexagonal lattices with three-point interactions. J. Math. Pures Appl. 108, 613–632 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Liu, F., Ming, P., Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76, 064120 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Lu, Q., Huang, R.: Nonlinear mechanics of single-atomic-layer graphene sheets. Int. J. Appl. Mech. 01(03), 443–467 (2009)CrossRefGoogle Scholar
  23. 23.
    Liew, K.M., Zhang, Y., Zhang, L.W.: Nonlocal elasticity theory for graphene modeling and simulation: prospects and challenges. J. Model. Mech. Mater. 1, 1–7 (2017)Google Scholar
  24. 24.
    Mermin, N.D.: Crystalline order in two dimensions. Phys. Rev. 176, 250–254 (1968)ADSCrossRefGoogle Scholar
  25. 25.
    Sakhaee-Pour, A.: Elastic properties of single-layered graphene sheet. Solid State Commun. 149(12), 91–95 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Scarpa, F., Adhikari, S., Gil, A.J., Remillat, C.: The bending of single layer graphene sheets: the lattice versus continuum approach. Nanotechnology 21(12), 125702 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Scarpa, F., Adhikari, S., Srikantha Phani, A.: Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20(6), 065709 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Sfyris, D., Sfyris, G.I., Galiotis, C.: Curvature dependent surface energy for a free standing monolayer graphene: some closed form solutions of the non-linear theory. Int. J. Nonlinear Mech. 67, 186–197 (2014)ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    Sfyris, D., Sfyris, G.I., Galiotis, C.: Curvature dependent surface energy for free standing monolayer graphene: geometrical and material linearization with closed form solutions. Int. J. Eng. Sci. 85, 224–233 (2014)CrossRefzbMATHGoogle Scholar
  30. 30.
    Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(12), 6991–7000 (1988)Google Scholar
  31. 31.
    Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39(8), 5566–5568 (1989)Google Scholar
  32. 32.
    Wei, Y., Wang, B., Wu, J., Yang, R., Dunn, M.L.: Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett. 13(1), 26–30 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    Zakharchenko, K.V., Katsnelson, M.I., Fasolino, A.: Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett. 102, 046808 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Zhao, H., Min, K., Aluru, N.R.: Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 9(8), 3012–3015 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Zhou, J., Huang, R.: Internal lattice relaxation of single-layer graphene under in-plane deformation. J. Mech. Phys. Solids 56(4), 1609–1623 (2008)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UdineItaly
  2. 2.Department of Structural and Geotechnical EngineeringSapienza University of RomeRomeItaly
  3. 3.Dipartimento di Ingegneria Civile e IndustrialeUniversità di PisaPisaItaly

Personalised recommendations