Skip to main content
Log in

The Exponential Map of the Group of Area-Preserving Diffeomorphisms of a Surface with Boundary

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove that the Riemannian exponential map of the right-invariant L2 metric on the group of volume-preserving diffeomorphisms of a two-dimensional manifold with a nonempty boundary is a nonlinear Fredholm map of index zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, V.I.: On the differential geometry of infinite-dimensional Lie groups and its application to the hydrodynamics of perfect fluids, in Vladimir I. Arnold: collected works vol. 2, Springer, New York, 2014

  2. Arnold V., Khesin B.: Topological Methods in Hydrodynamics. Springer, New York (1998)

    MATH  Google Scholar 

  3. Benn, J.: PhD Dissertation. University of Notre Dame, 2014

  4. Benn J.: Conjugate points on the symplectomorphism group. Ann. Glob. Anal. Geom. 48, 133–147 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benn J.: The coadjoint operator, conjugate points, and the stability of ideal fluids. Arnold Math. J. 2, 249–266 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grossman N.: Hilbert manifolds without epiconjugate points. Proc. Am. Math. Soc. 16, 1365–1371 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ebin D., Marsden J.: Diffeomorphism groups and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ebin D., Misiołek G., Preston S.C.: Singularities of the exponential map on the volume-preserving diffeomorphism group. Geom. Funct. anal. 16, 850–868 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kato T.: Perturbation Theory for Linear Operators. Springer, New York (1966)

    Book  MATH  Google Scholar 

  10. Kiselev A., Šverák V.: Small scale creation for solutions of the incompressible two-dimensional Euler equation. Ann. Math. 180, 1205–1220 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Luo G., Hou T.: Toward the finite-time blowup of the 3D axisymmetric Euler equations: a numerical investigation. Multisc. Model. Simul. 12(4), 1722–1776 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Misiołek G.: Stability of ideal fluids and the geometry of the group of diffeomorphisms. Indiana Univ. Math. J. 42, 215–235 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Misiolek G.: Conjugate points in \({\mathcal{D}_\mu (\mathbb{T}^2)}\). Proc. Am. Math. Soc. 124, 977–982 (1996)

    Article  MathSciNet  Google Scholar 

  14. Misiołek G., Preston S.C.: Fredholm properties of Riemannian exponential maps on diffeomorphism groups. Invent. math. 179, 191–227 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Preston S.C.: On the volumorphism group, the first conjugate point is always the hardest. Commun. Math. Phys. 267, 493–513 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Preston S.C.: The WKB method for conjugate points in the volumorphism group. Indiana Univ. Math. J. 57, 3303–3327 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Preston S.C., Washabaugh P.: The geometry of axisymmetric ideal fluid flows with swirl. Arnold Math. J. 3, 175–185 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shnirelman A.: Generalized fluid flows, their approximations and applications. Geom. Funct. anal. 4, 586–620 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shnirelman A.: Microglobal analysis of the Euler equations. J. Math. Fluid Mech. 7, S387–S396 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Smale S.: An infinite dimensional version of Sard’s Theorem. Am. J. Math. 87, 861–865 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wolibner W.: Un theoréme sur l’existence du mouvement plan d’un fluide parfait, homogéne, incompressible, pendant un temps infiniment long. Math. Z. 37, 698–726 (1933)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Preston.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benn, J., Misiołek, G. & Preston, S.C. The Exponential Map of the Group of Area-Preserving Diffeomorphisms of a Surface with Boundary. Arch Rational Mech Anal 229, 1015–1035 (2018). https://doi.org/10.1007/s00205-018-1231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1231-7

Navigation