Archive for Rational Mechanics and Analysis

, Volume 229, Issue 1, pp 79–123 | Cite as

Data-Driven Problems in Elasticity

  • S. Conti
  • S. Müller
  • M. Ortiz


We consider a new class of problems in elasticity, referred to as Data-Driven problems, defined on the space of strain-stress field pairs, or phase space. The problem consists of minimizing the distance between a given material data set and the subspace of compatible strain fields and stress fields in equilibrium. We find that the classical solutions are recovered in the case of linear elasticity. We identify conditions for convergence of Data-Driven solutions corresponding to sequences of approximating material data sets. Specialization to constant material data set sequences in turn establishes an appropriate notion of relaxation. We find that relaxation within this Data-Driven framework is fundamentally different from the classical relaxation of energy functions. For instance, we show that in the Data-Driven framework the relaxation of a bistable material leads to material data sets that are not graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, R.; Dhar, V.: Big data, data science, and analytics: the opportunity and challenge for IS research. Inf. Syst. Res. 25, 443–448 (2014)CrossRefGoogle Scholar
  2. 2.
    Allaire, G.: Shape optimization by the homogenization method, vol. 146. Applied Mathematical SciencesSpringer, New York (2002)MATHGoogle Scholar
  3. 3.
    Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1976/77)Google Scholar
  4. 4.
    Ball, J.M.; James, R.D.: Fine phase mixtures as minimizers of the energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Conti, S.; Dolzmann, G.: On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Ration. Mech. Anal. 217, 413–437 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cherkaev, A.: Variational methods for structural optimization, vol. 140. Applied Mathematical SciencesSpringer, New York (2000)MATHGoogle Scholar
  7. 7.
    Dacorogna, B.: Weak continuity and weak lower semicontinuity of nonlinear functionals, vol. 922. Lecture Notes in MathematicsSpringer, Berlin (1982)CrossRefMATHGoogle Scholar
  8. 8.
    Dacorogna, B.: Direct methods in the calculus of variations, vol. 78. Applied Mathematical SciencesSpringer, Berlin (1989)MATHGoogle Scholar
  9. 9.
    Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Progress in Nonlinear Differential Equations and Their Applications. Birkhauser, Boston (1993)CrossRefMATHGoogle Scholar
  10. 10.
    Francfort, G.A.; Murat, F.: Homogenization and optimal bounds in linear elasticity. Arch. Ration. Mech. Anal. 94, 307–334 (1986)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fonseca, I.; Müller, S.: \({\cal{A}}\)-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30, 1355–1390 (1999)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Girault, V.; Raviart, P.-A.: Finite element approximation of the Navier-Stokes equations, vol. 749. Lecture Notes in MathematicsSpringer, Berlin (1979)CrossRefMATHGoogle Scholar
  13. 13.
    Kalidindi, S.R.; De Graef, M.: Materials data science: current status and future outlook. Ann. Rev. Mater. Res. 45, 171–193 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Khachaturyan, A.G.: Some questions concerning the theory of phase transformations in solids. Sov. Phys. Solid State 8, 2163–2168 (1967)Google Scholar
  15. 15.
    Khachaturyan, A.G.: Theory of Structural Transformations in Solids. Wiley, New York (1983)Google Scholar
  16. 16.
    Kirchdoerfer, T.; Ortiz, M.: Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 304, 81–101 (2016)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kohn, R.V.: The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3, 193–236 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Khachaturyan, A.G.; Shatalov, G.: Theory of macroscopic periodicity for a phase transition in the solid state. Sov. Phys. JETP 29, 557–561 (1969)ADSGoogle Scholar
  19. 19.
    Kohn, R.V.; Strang, G.: Optimal design and relaxation of variational problems. I. Commun. Pure Appl. Math. 39, 113–137 (1986)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kohn, R.V.; Strang, G.: Optimal design and relaxation of variational problems. II. Commun. Pure Appl. Math. 39, 139–182 (1986)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)CrossRefMATHGoogle Scholar
  22. 22.
    Müller, S., Šverák, V.: Unexpected solutions of first and second order partial differential equations. In: Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), number Extra Vol. II, pp. 691–702, 1998Google Scholar
  23. 23.
    Müller, S.; Šverák, V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. 2(157), 715–742 (2003)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Murat, F., Tartar, L.: Calcul des variations et homogénéisation. In: Bergman, D.J., et al. (eds.) Les méthodes de l'homogénéisation: théorie et applications en physique, pp. 319–370. Eyrolles, 1985. Translated in [25] Google Scholar
  25. 25.
    Murat, F., Tartar, L.: Calculus of variations and homogenization. In: Cherkaev, A., Kohn, R. (eds.) Topics in the Mathematical Modelling of Composite Materials, volume 31 of Progr. Nonlinear Differential Equations Appl., pp. 139–173. Birkhäuser Boston, 1997Google Scholar
  26. 26.
    Müller, S.: Variational models for microstructure and phase transitions. In: Bethuel, F., et al. (eds.) Calculus of variations and geometric evolution problems, Springer Lecture Notes in Math, pp. 85–210. 1713Springer, Berlin (1999)CrossRefGoogle Scholar
  27. 27.
    Murat, F.: Compacité par compensation. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 5, 489–507, 1978Google Scholar
  28. 28.
    Murat, F.: Compacité par compensation: condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 8, 69–102, 1981Google Scholar
  29. 29.
    Nesi, V.: Bounds on the effective conductivity of two-dimensional composites made of \({n \geqq 3}\) isotropic phases in prescribed volume fraction: the weighted translation method. Proc. R. Soc. Edinb. Sect. A 125, 1219–1239 (1995)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Nesi, V.; Milton, G.W.: Polycrystalline configurations that maximize electrical resistivity. J. Mech. Phys. Solids 39, 525–542 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Rešetnjak, J.G.: Stability of conformal mappings in multi-dimensional spaces. Sib. Mat. Ž. 8, 91–114 (1967)MathSciNetGoogle Scholar
  32. 32.
    Rešetnjak, J.G.: Stability theorems for mappings with bounded distortion. Sib. Mat. Ž. 9, 667–684 (1968)MathSciNetGoogle Scholar
  33. 33.
    Ren, W.; Li, H.; Song, G.: A one-dimensional strain-rate-dependent constitutive model for superelastic shape memory alloys. Smart Mater. Struct. 16, 191–197 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Roitburd, A.L.: The domain structure of crystals formed in the solid phase. Sov. Phys. Solid State 10, 2870–2876 (1969)Google Scholar
  35. 35.
    Roitburd, A.L.: Martensitic transformation as a typical phase transformation in solids. In: Solid State Physics, vol. 33, pp. 317–390. Academic Press, New York, 1978Google Scholar
  36. 36.
    Tartar, L.: Une nouvelle méthode de résolution d'équations aux dérivées partielles non linéaires. In: Journées d'Analyse Non Linéaire (Proc. Conf., Besançon, 1977), volume 665 of Lecture Notes in Math., pp. 228–241. Springer, Berlin, 1978Google Scholar
  37. 37.
    Tartar, L.: Compensated compactness and applications to partial differential equations. Nonlinear analysis and mechanics: Heriot-Watt Symp., Vol. 4, Edinburgh, : Res. Notes Math . 39, 136–212, 1979Google Scholar
  38. 38.
    Tartar, L.: The compensated compactness method applied to systems of conservation laws. In: Systems of nonlinear partial differential equations (Oxford, 1982), volume 111 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 263–285. Reidel, Dordrecht, 1983Google Scholar
  39. 39.
    Tartar, L.: Estimations fines des coefficients homogénéisés. In: Ennio De Giorgi colloquium (Paris, 1983), volume 125 of Res. Notes in Math., pp. 168–187. Pitman, Boston, 1985Google Scholar
  40. 40.
    Tartar, L.: Oscillations in nonlinear partial differential equations: compensated compactness and homogenization. In: Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), volume 23 of Lectures in Appl. Math., pp. 243–266. Amer. Math. Soc., Providence, RI, 1986Google Scholar
  41. 41.
    Tartar, L.: \(H\)-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinb. Sect. A 115, 193–230 (1990)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Tartar, L.: The general theory of homogenization. A personalized introduction, volume 7 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin; UMI, Bologna, 2009Google Scholar
  43. 43.
    Temam, R.: Navier-Stokes equations, vol. 2. Studies in Mathematics and its ApplicationsNorth-Holland Publishing Co., Amsterdam-New York, Revised edition (1979)MATHGoogle Scholar
  44. 44.
    Tonelli, L.: Fondamenti di Calcolo delle Variazioni. Zanichelli, Bologna (1921)MATHGoogle Scholar
  45. 45.
    Willis, J.R.: Variational and related methods for the overall properties of composites. Adv. Appl. Mech. 21, 1–78 (1981)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Angewandte MathematikUniversität BonnBonnGermany
  2. 2.Hausdorff Center for MathematicsBonnGermany
  3. 3.Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations