Skip to main content
Log in

Radially Symmetric Motions of Nonlinearly Viscoelastic Bodies Under Live Loads

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper treats radially symmetric motions of nonlinearly viscoelastic circular-cylindrical and spherical shells subjected to the live loads of centrifugal force and (time-dependent) hydrostatic pressures. The governing equations are exact versions of those for 3-dimensional continuum mechanics (so shell does not connote an approximate via some shell theory). These motions are governed by quasilinear third-order parabolic-hyperbolic equations having but one independent spatial variable. The principal part of such a partial differential equation is determined by a general family of nonlinear constitutive equations. The presence of strains in two orthogonal directions requires a careful treatment of constitutive restrictions that are physically natural and support the analysis. The interaction of geometrically exact formulations, the compatible use of general constitutive equations for material response, and the presence of live loads show how these factors play crucial roles in the behavior of solutions. In particular, for different kinds of live loads there are thresholds separating materials that produce qualitatively different dynamical behavior. The analysis (using classical methods) covers infinite-time blowup for cylindrical shells subject to centrifugal forces, infinite-time blowup for cylindrical shells subject to steady and time-dependent hydrostatic pressures, finite-time blowup for spherical shells subject to steady and time-dependent hydrostatic pressures, and the preclusion of total compression. This paper concludes with a sketch (using some modern methods) of the existence of regular solutions until the time of blowup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achenbach, J.: Wave Propagation in Elastic Solids, North Holland. 1973

  2. Andrews, G.: On the existence of solutions to the equation \(u_{tt} =u_{xxt}+\sigma (u_x)_x\). J. Differ. Equ. 35, 200–231 (1980)

    Article  ADS  Google Scholar 

  3. Andrews, G.; Ball, J.M.: Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity. J. Differ. Equ. 44, 306–341 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn., Springer, 2005

  5. Antman, S. S., Klaus, F.: The shearing of nonlinearly viscoplastic slabs, Nonlinear Problems in Applied Mathematics, edited by T. Angell, L. P. Cook, R. Kleinman, and W. E. Olmstead, SIAM, pp. 20–29, 1996

  6. Antman, S.S.; Lacarbonara, W.: Forced radial motions of nonlinearly viscoelastic shells. J. Elast. 96, 155–190 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Antman, S.S.; Negrón-Marrero, P.V.: The remarkable nature of radially symmetric equilibrium states of aeolotropic nonlinearly elastic bodies. J. Elast. 18, 131–164 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Antman, S.S.; Seidman, T.I.: Quasilinear hyperbolic-parabolic equations of one-dimensional viscoelasticity. J. Differ. Equ. 124, 132–185 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Antman, S.S.; Seidman, T.I.: Parabolic-hyperbolic systems governing the spatial motion of nonlinearly viscoelastic rods. Arch. Ration. Mech. Anal. 175, 85–150 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Antman, S.S.; Ulusoy, S.: The asymptotics of heavily burdened viscoelastic rods. Q. Appl. Math. 70, 437–467 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Antman, S.S.; Ulusoy, S.: Global attractors for quasilinear parabolic-hyperbolic equations governing longitudinal motions of nonlinearly viscoelastic rods. Physica D 291, 31–44 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Aubin, J.P.: Un théorème de compacité, C.R. Acad. Sci. Paris 265, 5042–5045, 1963

  13. Ball, J.M.: Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Q. J. Math. 28, 473–486 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ball, J. M.: Finite time blow-up in nonlinear problems. In: M. G. Crandall (ed.) Nonlinear Evolution Equations, Academic Press, 189–205, 1978

  15. Ball, J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. Lond. A 306, 557–611 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Ball, J.M.; James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brezis, H.: Functional Analysis. Springer, Sobolev Spaces and Partial Differential Equations (2011)

    MATH  Google Scholar 

  18. Bridgman, P. W.: The Physics of High Pressure, Bell, reprinted by Dover, 1931

  19. Calderer, M.C.: The dynamic behavior of nonlinearly elastic spherical shells. J. Elast. 13, 17–47 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Calderer, M.C.: Finite time blow-up and stability properties of materials with fading memory. J. Diff. Equ. 63, 289–305 (1986)

    Article  ADS  Google Scholar 

  21. Calderer, M.C.: The dynamic behavior of viscoelastic spherical shells. Math. Methods Appl. Sci. 9, 13–34 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ciarlet, P. G.: Linear and Nonlinear Functional Analysis with Applications, SIAM, 2013

  23. Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations, McGraw-Hill, 1955

  24. Courant, R., Hilbert D.: Methods of Mathematical Physics, Vol. 2, Interscience, 1961

  25. Dafermos, C.M.: The mixed initial-boundary value problem for the equations of nonlinear one-dimensional viscoelasticity. J. Differ. Equ. 6, 71–86 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Demoulini, S.: Weak solutions for a class of nonlinear systems of viscoelasticity. Arch. Ration. Mech. Anal. 155, 299–334 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Evans, L. C.: Partial Differential Equations, 2nd edn., Amer. Math. Soc., 2010

  28. Faedo, S.: Un nuovo metodo per l'analisi esistenziale e quantitativa dei problemi di propagazione. Ann. Sci. Norm. Pisa 1, 1–40 (1949)

    MathSciNet  MATH  Google Scholar 

  29. Gajewski, H., Gröger, K., Zacharias, K. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, 1974

  30. Greenberg, J.M.: On the existence, uniqueness, and stability of solutions of the equation \(\rho _0X_{tt} = E(X_x)X_{xx}+\lambda X_{xxt}\). J. Math. Anal. Appl. 25, 575–591 (1969)

    Article  MathSciNet  Google Scholar 

  31. Greenberg, J.M.; MacCamy, R.C.: On the exponential stability of solutions of \(E(u_x)u_{xx}+\lambda u_{xtx}=\rho _0 u_{tt}\). J. Math. Anal. Appl. 31, 406–417 (1970)

    Article  MathSciNet  Google Scholar 

  32. Greenberg, J.M.; MacCamy, R.C.; Mizel, V.J.: On the existence, uniqueness, and stability of solutions of the equation \(\sigma ^{\prime }(u_x)u_{xx}+\lambda u_{txt} =\rho _0 u_{tt}\). J. Math. Mech. 17, 707–728 (1968)

    MathSciNet  Google Scholar 

  33. Hale, J. K.: Ordinary Differential Equations, Wiley-Interscience, 1969

  34. Hanyga, A.: Mathematical Theory of Non-Linear Elasticity, PWN, 1985

  35. Knops, R.: Logarithmic convexity and other techniques applied to problems in continuum mechanics. In: R. Knops (ed.) Symposium on Non-Well-Posed Problems and Logarithmic Convexity, Springer Lect. Notes Math. 316, 31–54, 1973

  36. Knops, R.; Levine, H.A.; Payne, L.E.: Non-existence, instability, and growth theorems for solutions of a class of abstract nonlinear equations with applications to nonlinear elastodynamics. Arch. Ration. Mech. Anal. 55, 52–72 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kolsky, H.: Stress Waves in Solids. Oxford Univ. Pr, Reprinted by Dover (1953)

    MATH  Google Scholar 

  38. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars (1969)

    MATH  Google Scholar 

  39. Miroshnikov, A.; Tzavaras, A.: On the construction and properties of weak solutions describing dynamic cavitation. J. Elast. 118, 141–185 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Payne, L. E.: Improperly Posed Problems in Partial Differential Equations, SIAM, 1976

  41. Pego, R.L.: Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability Arch. Ration. Mech. Anal. 97, 353–394 (1987)

    Article  MATH  Google Scholar 

  42. Rybka, P.: Dynamic modelling of phase transitions by means of viscoelasticity in many dimensions. Proc. R. Soc. Edin. A 121, 101–138 (1992)

    Article  MATH  Google Scholar 

  43. Pericak-Spector, K.A.; Spector, S.J.: Dynamic cavitation with shocks in nonlinear elasticity. Proc. Royal Soc. Edin. A 127, 837–857 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pericak-Spector, K.A.; Spector, S.J.: Nonuniqueness for a hyperbolic system: cavitation in non-linear elastodynamics. Arch. Ration. Mech. Anal. 101, 293–317 (1988)

    Article  MATH  Google Scholar 

  45. Seidman, T. I.: The transient semiconductor problem with generating terms, II. In: Nonlinear Semigroups, Partial Differential Equations, and Attractors. T. E. Gill, W. W. Zachary (eds.), Springer Lecture Notes Math. 1394, 185–198, 1989

  46. Showalter, R.E.; Ting, T.W.: Pseudo-parabolic partial differential equations. SIAM J. Math. Anal. 1, 1–26 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  47. Simo, J. C., Hughes, T. J. R.: Computational Inelasticity, Springer, 1998

  48. Sivaloganathan, J.: Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity. Arch. Ration. Mech. Anal. 96, 97–136 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  49. Stepanov, A. B.: Analysis of Steady-state and Dynamical Radially-Symmetric Problems of Nonlinear Viscoelasticity, Doctoral dissertation, Univ. Maryland (http://drum.lib.umd.edu/handle/1903/17278), 2015

  50. Stepanov, A.B.; Antman, S.S.: Radially symmetric steady states of nonlinearly elastic plates and shells. J. Elast. 124, 243–278 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Truesdell, C., Noll, W.: Non-linear Field Theories of Mechanics, 3rd edition, Springer, 2004

  52. Tvedt, B.: Quasilinear equations for viscoelasticity of strain-rate type. Arch. Ration. Mech. Anal. 189, 237–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Volokh, K.Y.: Hyperelasticity with softening for modeling materials failure. J. Mech. Phys. Solids 55, 2237–2264 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Wang, C.-C., Truesdell, C.: Introduction to Rational Elasticity, Noordhoff, 1973

  55. Zeidler, E.: Nonlinear Functional Analysis and it Applications II. Springer, Monotone Operators (1986)

    Book  MATH  Google Scholar 

  56. Zheng, S.: Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems, Longman, 1995

  57. Zheng, S.: Nonlinear Evolution Equations, Chapman & Hall/CRC, 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart S. Antman.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, A.B., Antman, S.S. Radially Symmetric Motions of Nonlinearly Viscoelastic Bodies Under Live Loads. Arch Rational Mech Anal 226, 1209–1247 (2017). https://doi.org/10.1007/s00205-017-1153-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1153-9

Navigation