Skip to main content
Log in

The Euler–Maxwell System for Electrons: Global Solutions in 2D

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A basic model for describing plasma dynamics is given by the Euler–Maxwell system, in which compressible ion and electron fluids interact with their own self-consistent electromagnetic field. In this paper we consider the “one-fluid” Euler–Maxwell model for electrons, in 2 spatial dimensions, and prove global stability of a constant neutral background. In 2 dimensions our global solutions have relatively slow (strictly less than 1/t) pointwise decay and the system has a large (codimension 1) set of quadratic time resonances. The issue in such a situation is to solve the “division problem”. To control the solutions we use a combination of improved energy estimates in the Fourier space, an L 2 bound on an oscillatory integral operator, and Fourier analysis of the Duhamel formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard, T., Delort, J.-M.: Sobolev estimates for two dimensional gravity water waves. arXiv:1307.3836

  2. Alinhac, S.: Temps de vie des solutions régulières des équations d’Euler compressibles axisymétriques en dimension deux. (French) [Life spans of the classical solutions of two-dimensional axisymmetric compressible Euler equations]. Invent. Math. 111(3), 627–670 (1993)

  3. Alinhac S.: Blowup of small data solutions for a quasilinear wave equation in two space dimensions. Ann. Math. 149(2), 97–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alinhac S.: The null condition for quasilinear wave equations in two space dimensions I. Invent. Math. 145, 597–618 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Alinhac S.: The null condition for quasilinear wave equations in two space dimensions. II, Amer. J. Math. 123, 1071–1101 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernicot F., Germain P.: Bilinear dispersive estimates via space-time resonances, part II: dimensions 2 and 3. Arch. Ration. Mech. Anal. 214, 617–669 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bittencourt, J.A.: Fundamentals of Plasma Physics, 3rd edition. Springer 2004. ISBN-13: 978-1441919304

  8. Chen, G.-Q., Jerome, J., Wang, D.: Compressible Euler–Maxwell equations. Proceedings of the 5th international workshop on mathematical aspects of fluid and plasma dynamics (Maui, HI, 1998). Transport Theory Statist. Phys. 29(3–5), 311–331 (2000)

  9. Christodoulou D.: Global solutions of nonlinear hyperbolic equations for small initial data. Comm. Pure Appl. Math. 39, 267–282 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Christodoulou, D.: The Formation of Shocks in 3-Dimensional Fluids, EMS Monographs in Mathematics, EMS Publishing House, 2007

  11. Christodoulou, D., Klainerman, S.: The global nonlinear stability of the Minkowski space. Princeton Mathematical Series, 41. Princeton University Press, Princeton, NJ, 1993

  12. Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Sharp global well-posedness for KdV and modified KdV on R and T. J. Am. Math. Soc. 16, 705–749 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Delcroix, J.-L., Bers, A.: Physique Des Plasmas, InterEditions/ CNRS Editions, Paris, 1994

  14. Delort, J.-M., Fang, D.: Almost global existence for solutions of semilinear Klein–Gordon equations with small weakly decaying Cauchy data. Comm. Partial Differ. Equ. 25(11–12), 2119–2169 (2000)

  15. Delort J.-M., Fang D., Xue R.: Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions. J. Funct. Anal. 211, 288–323 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Deng, Y.: Global Stability of Klein–Gordon Systems in Dimension 3. arXiv:1602.01820

  17. Germain P.: Global existence for coupled Klein–Gordon equations with different speeds. Ann. Inst. Fourier (Grenoble) 61, 2463–2506 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Germain P., Masmoudi N.: Global existence for the Euler–Maxwell system. Ann. Sci. Ec. Norm. Super. 47(4), 469–503 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Germain P., Masmoudi N., Pausader B.: Nonneutral global solutions for the electron Euler–Poisson system in three dimensions. SIAM J. Math. Anal. 45, 267–278 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for 3D quadratic Schrödinger equations. Int. Math. Res. Not. 2009, 414–432 (2009)

  21. Germain P., Masmoudi N., Shatah J.: Global solutions for the gravity water waves equation in dimension 3. Ann. Math. 175(2), 691–754 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo Y.: Smooth irrotational flows in the large to the Euler-Poisson system in \({\mathbb{R}^{3+1}}\). Comm. Math. Phys. 195, 249–265 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Guo Y., Ionescu A.D., Pausader B.: Global solutions of the Euler–Maxwell two-fluid system in 3D. Ann. Math. 183(2), 377–498 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, Y., Ionescu, A.D., Pausader, B.: Global solutions of certain plasma fluid models in 3D. J. Math. Phys. 55, 123102 (2014)

  25. Guo Y., Pausader B.: Global smooth ion dynamics in the Euler–Poisson system. Comm. Math. Phys. 303, 89–125 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Gustafson S., Nakanishi K., Tsai T.-P.: Scattering theory for the Gross–Pitaevskii equation in three dimensions. Commun. Contemp. Math. 11, 657–707 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hani Z., Pusateri F., Shatah J.: Scattering for the Zakharov system in 3 dimensions. Comm. Math. Phys. 322, 731–753 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Hunter, J.K., Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates. arXiv:1401.1252

  29. Ionescu A.D., Pausader B.: The Euler–Poisson system in 2D: global stability of the constant equilibrium solution. Int. Math. Res. Not. 2013, 761–826 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Ionescu A.D., Pausader B.: Global solutions of quasilinear systems of Klein–Gordon equations in 3D. J. Eur. Math. Soc. 16, 2355–2431 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ionescu A.D., Pusateri F.: Global solutions for the gravity water waves system in 2d. Invent. Math. 199, 653–804 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Ionescu, A.D., Pusateri, F.: Global regularity for 2d water waves with surface tension. arXiv:1408.4428

  33. John F.: Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math. 28, 235–268 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. John F., Klainerman S.: Almost global existence to nonlinear wave equations in three space dimensions. Comm. Pure Appl. Math. 37, 443–455 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kato T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  36. Klainerman, S.: Long time behaviour of solutions to nonlinear wave equations. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), 1209–1215, PWN, Warsaw, 1984

  37. Klainerman S.: Uniform decay estimates and the Lorentz invariance of the classical wave equation. Comm. Pure Appl. Math. 38, 321–332 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Klainerman S.: Global existence of small amplitude solutions to nonlinear Klein–Gordon equations in four space-time dimensions. Comm. Pure Appl. Math. 38, 631–641 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  39. Klainerman, S.: The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), 293–326, Lectures in Appl. Math., 23, Amer. Math. Soc., Providence, RI, 1986

  40. Li D., Wu Y.: The Cauchy problem for the two dimensional Euler–Poisson system. J. Eur. Math. Soc. 16, 2211–2266 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Peng, Y.J.: Global existence and long-time behavior of smooth solutions of two-fluid Euler–Maxwell equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 29, 737–759 (2012)

  42. Shatah J.: Normal forms and quadratic nonlinear Klein–Gordon equations. Comm. Pure Appl. Math. 38, 685–696 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sideris T.: Formation of singularities in three-dimensional compressible fluids. Comm. Math. Phys. 101, 475–485 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Simon J.: A wave operator for a nonlinear Klein–Gordon equation. Lett. Math. Phys. 7, 387–398 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Wu S.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 177, 45–135 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru D. Ionescu.

Additional information

Communicated by P. Constantin

Communicated by P. Constantin

Deng was supported in part by a Jacobus Fellowship from Princeton University. Ionescu was supported in part by NSF Grants DMS-1265818 and FRG-1463753. Pausader author was supported in part by NSF Grants DMS-1069243 and DMS-1362940, and a Sloan fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Ionescu, A.D. & Pausader, B. The Euler–Maxwell System for Electrons: Global Solutions in 2D . Arch Rational Mech Anal 225, 771–871 (2017). https://doi.org/10.1007/s00205-017-1114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1114-3

Navigation