Archive for Rational Mechanics and Analysis

, Volume 225, Issue 1, pp 549–572 | Cite as

On the Liouville Type Theorems for Self-Similar Solutions to the Navier–Stokes Equations

Article

Abstract

We prove Liouville type theorems for the self-similar solutions to the Navier–Stokes equations. One of our results generalizes the previous ones by Nečas–Ru̇žička–Šverák and Tsai. Using a Liouville type theorem, we also remove a scenario of asymptotically self-similar blow-up for the Navier–Stokes equations with the profile belonging to \({L^{p, \infty} (\mathbb{R}^3)}\) with \({p > \frac{3}{2}}\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chae D.: Nonexistence of asymptotically self-similar singularities in the Euler and the Navier–Stokes equations. Math. Ann. 238, 435–449 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Galdi G., Simader C., Sohr H.: On the Stokes problem in Lipshitz domain. Ann. Math. Pure. Appl. (IV) 167, 147–163 (1994)CrossRefMATHGoogle Scholar
  4. 4.
    Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Stud. No. 105 Princeton University Press, Princeton (1983)Google Scholar
  5. 5.
    Guevara, C., Phuc, N.C.: Leray’s self-similar solutions to the Navier–Stokes equations with profiles in Marcinkiewicz and Morrey spaces. arXiv:1509.08177 (preprint) (2015)
  6. 6.
    Gustafson S., Kang K., Tsai T.-P.: Regularity criteria for suitable weak solutions of the Navier–Stokes equations near the boundary. J. Differ. Equ. 226(2), 594–618 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Nečas J., Ružička M., Šverák V.: On Leray’s self-similar solutions of the Navier–Stokes equations. Acta Math. 176, 283–294 (1996)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Tsai T.-P.: On Leray’s self-similar solutions of the Navier–stokes equations satisfying local energy estimates. Arch. Ration. Mech. Anal. 43, 29–51 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Wolf, J.: A new criterion for partial regularity of suitable weak solutions to the Navier–Stokes equations. Adv. Math. Fluid Mech.. Rannacher, A.S.R. ed., pp. 613–630. Springer (2010)Google Scholar
  11. 11.
    Wolf J.: On the local regularity of suitable weak solutions to the generalized Navier–Stokes equations. Ann. Univ. Ferrara 61, 149–171 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Wolf J.: On the local pressure of the Navier–Stokes equations and related systems. Adv. Differ. Equ. 22, 305–338 (2017)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsChung-Ang UniversitySeoulRepublic of Korea
  2. 2.Department of MathematicsHumboldt University BerlinBerlinGermany

Personalised recommendations