Skip to main content
Log in

Global Existence and Asymptotic Behavior of Affine Motion of 3D Ideal Fluids Surrounded by Vacuum

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The 3D compressible and incompressible Euler equations with a physical vacuum free boundary condition and affine initial conditions reduce to a globally solvable Hamiltonian system of ordinary differential equations for the deformation gradient in \({{\rm GL}^+(3, \mathbb{R})}\). The evolution of the fluid domain is described by a family of ellipsoids whose diameter grows at a rate proportional to time. Upon rescaling to a fixed diameter, the asymptotic limit of the fluid ellipsoid is determined by a positive semi-definite quadratic form of rank r = 1, 2, or 3, corresponding to the asymptotic degeneration of the ellipsoid along 3−r of its principal axes. In the compressible case, the asymptotic limit has rank r = 3, and asymptotic completeness holds, when the adiabatic index \({\gamma}\) satisfies \({4/3 < \gamma < 2}\). The number of possible degeneracies, 3−r, increases with the value of the adiabatic index \({\gamma}\). In the incompressible case, affine motion reduces to geodesic flow in \({{\rm SL}(3, \mathbb{R})}\) with the Euclidean metric. For incompressible affine swirling flow, there is a structural instability. Generically, when the vorticity is nonzero, the domains degenerate along only one axis, but the physical vacuum boundary condition fails over a finite time interval. The rescaled fluid domains of irrotational motion can collapse along two axes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16(fasc. 1), 319–361 (1966)

  2. Chemin J.Y.: Dynamique des gaz à masse totale finie. Asymptot. Anal. 3(3), 215–220 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Christodoulou, D.: The formation of black holes in general relativity. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich (2009). doi:10.4171/068

  4. Christodoulou, D., Lindblad, H.: On the motion of the free surface of a liquid. Comm. Pure Appl. Math. 53(12), 1536–1602 (2000). doi:10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.3.CO;2-H

  5. Coutand D., Lindblad H., Shkoller S.: A priori estimates for the free-boundary 3D compressible Euler equations in physical vacuum. Comm. Math. Phys. 296(2), 559–587 (2010). doi:10.1007/s00220-010-1028-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Coutand D., Shkoller S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930 (2007). doi:10.1090/S0894-0347-07-00556-5

    Article  MathSciNet  MATH  Google Scholar 

  7. Coutand D., Shkoller S.: A simple proof of well-posedness for the free-surface incompressible Euler equations. Discret. Contin. Dyn. Syst. Ser. S 3(3), 429–449 (2010). doi:10.3934/dcdss.2010.3.429

    Article  MathSciNet  MATH  Google Scholar 

  8. Coutand D., Shkoller S.: Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum. Arch. Ration. Mech. Anal. 206(2), 515–616 (2012). doi:10.1007/s00205-012-0536-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Grassin M.: Global smooth solutions to Euler equations for a perfect gas. Indiana Univ. Math. J. 47(4), 1397–1432 (1998). doi:10.1512/iumj.1998.47.1608

    Article  MathSciNet  MATH  Google Scholar 

  10. Hadžić, M., Jang, J.: Expanding Large Global Solutions of the Equations of Compressible Fluid Mechanics. arXiv:1610.01666 (2016). http://arxiv.org/abs/1610.01666

  11. Jang, J., Masmoudi, N.: Well and ill-posedness for compressible Euler equations with vacuum. J. Math. Phys. 53(11), 115,625 (2012). doi:10.1063/1.4767369

  12. Jang J., Masmoudi N.: Well-posedness of compressible Euler equations in a physical vacuum. Comm. Pure Appl. Math. 68(1), 61–111 (2015). doi:10.1002/cpa.21517

    Article  MathSciNet  MATH  Google Scholar 

  13. Lax P.D.: Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Math. Phys. 5, 611–613 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Lindblad H.: Well-posedness for the linearized motion of a compressible liquid with free surface boundary. Comm. Math. Phys. 236(2), 281–310 (2003). doi:10.1007/s00220-003-0812-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Lindblad H.: Well-posedness for the linearized motion of an incompressible liquid with free surface boundary. Comm. Pure Appl. Math. 56(2), 153–197 (2003). doi:10.1002/cpa.10055

    Article  MathSciNet  MATH  Google Scholar 

  16. Lindblad H.: Well posedness for the motion of a compressible liquid with free surface boundary. Comm. Math. Phys. 260(2), 319–392 (2005). doi:10.1007/s00220-005-1406-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Lindblad H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162(1), 109–194 (2005). doi:10.4007/annals.2005.162.109

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu T.P.: Compressible flow with damping and vacuum. Jpn. J. Ind. Appl. Math. 13(1), 25–32 (1996). doi:10.1007/BF03167296

    Article  MathSciNet  MATH  Google Scholar 

  19. Majda, A.: Vorticity and the mathematical theory of incompressible fluid flow. Comm. Pure Appl. Math. 39(S, suppl.), S187–S220 (1986). doi:10.1002/cpa.3160390711. Frontiers of the Mathematical Sciences (New York, 1985)

  20. Makino T., Ukai S., Kawashima S.: Sur la solution à support compact de l’équations d’Euler compressible. Jpn. J. Appl. Math. 3(2), 249–257 (1986). doi:10.1007/BF03167100

    Article  MATH  Google Scholar 

  21. Makino, T., Ukai, S., Kawashima, S.: On compactly supported solutions of the compressible Euler equation. In: Recent Topics in Nonlinear PDE, III (Tokyo, 1986), North-Holland Mathematics Studies, vol. 148, pp. 173–183. North-Holland, Amsterdam (1987). doi:10.1016/S0304-0208(08)72332-6

  22. Rouchon P.: The Jacobi equation, Riemannian curvature and the motion of a perfect incompressible fluid. Eur. J. Mech. B Fluids 11(3), 317–336 (1992)

    MathSciNet  MATH  Google Scholar 

  23. Serre, D.: Solutions classiques globales des équations d’Euler pour un fluide parfait compressible. Ann. Inst. Fourier 47(1), 139–153 (1997). http://www.numdam.org/item?id=AIF_1997__47_1_139_0

  24. Serre D.: Expansion of a compressible gas in vacuum. Bull. Inst. Math. Acad. Sin. (N.S.) 10(4), 695–716 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Sideris, T.C.: Formation of singularities in three-dimensional compressible fluids. Comm. Math. Phys. 101(4), 475–485 (1985). http://projecteuclid.org/getRecord?id=euclid.cmp/1104114244

  26. Sideris T.C.: Spreading of the free boundary of an ideal fluid in a vacuum. J. Differ. Equ. 257(1), 1–14 (2014). doi:10.1016/j.jde.2014.03.006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130(1), 39–72 (1997). doi:10.1007/s002220050177

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12(2), 445–495 (1999). doi:10.1090/S0894-0347-99-00290-8

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Sideris.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sideris, T.C. Global Existence and Asymptotic Behavior of Affine Motion of 3D Ideal Fluids Surrounded by Vacuum. Arch Rational Mech Anal 225, 141–176 (2017). https://doi.org/10.1007/s00205-017-1106-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1106-3

Navigation