Skip to main content
Log in

Optimal Boundary Control of a Simplified Ericksen–Leslie System for Nematic Liquid Crystal Flows in 2D

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we investigate an optimal boundary control problem for a two dimensional simplified Ericksen–Leslie system modelling the incompressible nematic liquid crystal flows. The hydrodynamic system consists of the Navier–Stokes equations for the fluid velocity coupled with a convective Ginzburg–Landau type equation for the averaged molecular orientation. The fluid velocity is assumed to satisfy a no-slip boundary condition, while the molecular orientation is subject to a time-dependent Dirichlet boundary condition that corresponds to the strong anchoring condition for liquid crystals. We first establish the existence of optimal boundary controls. Then we show that the control-to-state operator is Fréchet differentiable between appropriate Banach spaces and derive first-order necessary optimality conditions in terms of a variational inequality involving the adjoint state variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels H., Dolzmann G., Liu Y.-N.: Well-posedness of a fully coupled Navier–Stokes/Q-tensor system with inhomogeneous boundary data. SIAM J. Math. Anal. 46(4), 3050–3077 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alekseev V., Tikhomirov V., Fomin S.: Optimal Control. Consultants Bureau, New York (1987)

    Book  MATH  Google Scholar 

  3. Arada N., Raymond J.P.: Dirichlet boundary control of semilinear parabolic equations part I: problems with no state constraints. Appl. Math. Optim. 45(2), 125–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bosia S.: Well-posedness and long term behavior of a simplified Ericksen–Leslie non-autonomous system for nematic liquid crystal flow. Comm. Pure Appl. Anal. 11(2), 407–441 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cavaterra C., Rocca E.: On a 3D isothermal model for nematic liquid crystals accounting for stretching terms. Z. Angew. Math. Phys. 64(1), 69–82 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cavaterra C., Rocca E., Wu H.: Global weak solution and blow-up criterion of the general Ericksen–Leslie system for nematic liquid crystal flows. J. Differ. Equ. 255(1), 24–57 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Cavaterra C., Rocca E., Wu H., Xu X.: Global strong solutions of the full Navier-Stokes and Q-tensor system for nematic liquid crystal flows in 2D: existence and long-time behavior. SIAM J. Math. Anal. 48(2), 1368–1399 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Climent-Ezquerra B., Guillén-González F., Rojas-Medar M.A.: Reproductivity for a nematic liquid crystal model. Z. Angew. Math. Phys. 57(6), 984–998 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Climent-Ezquerra B., Guillén-González F., Moreno-Iraberte M.J.: Regularity and time-periodicity for a nematic liquid crystal model. Nonlinear Anal. 71(1&2), 539–549 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colli P., Sprekels J.: Optimal control of an Allen–Cahn equation with singular potentials and dynamic boundary condition. SIAM J. Control Optim. 53(1), 213–234 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dai M., Qing J., Schonbek M.: Asymptotic behavior of solutions to liquid crystal systems in \({\mathbb{R}^3}\). Commun. Partial Differ. Equ., 37(12), 2138–2164 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dai M., Qing J., Schonbek M.: Regularity of solutions to the liquid crystals systems in \({\mathbb{R}^2}\) and \({\mathbb{R}^3}\). Nonlinearity 25(2), 513–532 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Ericksen J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5(1), 22–34 (1961)

    MathSciNet  Google Scholar 

  14. Farshbaf-Shaker M.H.: A penalty approach to optimal control of Allen–Cahn variational inequalities: MPEC-view. Numer. Funct. Anal. Optim. 33(11), 1321–1349 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Farshbaf-Shaker M.H.: A relaxation approach to vector-valued Allen–Cahn MPEC problems. Appl. Math. Optim. 72(2), 2696–2721 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fattorini H., Sritharan S.: Existence of optimal controls for viscous flow problems. Proc. R. Soc. London Ser. A 439(1905), 81–102 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Fattorini H., Sritharan S.: Necessary and sufficient conditions for optimal controls in viscous flow problems. Proc. R. Soc. Edinburgh Ser. A. 124(2), 211–251 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frigeri S., Rocca E., Sprekels J.: Optimal distributed control of a nonlocal Cahn–Hilliard/Navier–Stokes system in 2D. SIAM J. Control Optim. 54(1), 221–250 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fursikov A.V.: Control problems and theorems concerning the unique solvability of a mixed boundary value problem for the three-dimensional Navier–Stokes and Euler equations. Math. USSR Sb. 43(2), 281–307 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fursikov A.V., Gunzburger M.D., Hou L.-S.: Boundary value problems and optimal boundary control for the Navier–Stokes systems: the two-dimensional case. SIAM J. Control Optim. 36(3), 852–894 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fursikov A.V., Gunzburger M.D., Hou L.-S.: Optimal boundary control for the evolutionary Navier–Stokes system: the three-dimensional case. SIAM J. Control Optim. 43(6), 2191–2232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gong W., Hinze M., Zhou Z.-J.: Finite element method and a priori error estimates for Dirichlet boundary control problems governed by parabolic PDEs. J. Sci. Comput. 66(3), 941–967 (2016)

    Article  MathSciNet  Google Scholar 

  23. Grasselli M., Wu H.: Long-time behavior for a nematic liquid crystal model with asymptotic stabilizing boundary condition and external force. SIAM J. Math. Anal. 45(3), 965–1002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guillén-González F., Rodríguez-Bellido M.A., Rojas-Medar M.A.: Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model. Math. Nachr. 282(6), 846–867 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hintermüller M., Wegner D.: Optimal control of a semidiscrete Cahn–Hilliard/Navier–Stokes system. SIAM J. Control Optim. 52(1), 747–772 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hintermüller, M., Wegner, D.: Distributed and boundary control problems for the semidiscrete Cahn–Hilliard/Navier–Stokes system with nonsmooth Ginzburg–Landau energies, Isaac Newton Institute Preprint Series No. NI14042-FRB, 2014

  27. Hinze, M., Kahle, C.: A nonlinear model predictive concept for control of two-phase flows governed by the Cahn–Hilliard–Navier–Stokes system. In: Hömberg, D., Tröltzsch, F. (eds.) System Modeling and Optimization, IFIP AICT 391, 348–357, 2013

  28. Hinze M., Kunisch K.: Second order methods for boundary control of the instationary Navier–Stokes system. Z. Angew. Math. Mech. 84(3), 171–187 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications. Springer, Netherlands, 2009

  30. Hömberg D., Krumbiegel K., Rehberg J.: Optimal control of a parabolic equation with dynamic boundary conditions. Appl. Math. Optim. 67(1), 3–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hu X.-P., Wu H.: Long-time dynamics of the nonhomogeneous incompressible flow of nematic liquid crystals. Commun. Math. Sci. 11(3), 779–806 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Huang J.-R., Lin F.-H., Wang C.-Y.: Regularity and existence of global solutions to the Ericksen–Leslie system in \({\mathbb{R}^2}\). Commun. Math. Phys. 331(2), 805–850 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Kunisch K., Vexler B.: Constrained Dirichlet boundary control in \({L^2}\) for a class of evolution equations. SIAM J. Control Optim. 46(5), 1726–1753 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Leslie, F.M.: Theory of flow phenomena in liquid crystals, in Advances in Liquid Crystals, 4, pp. 1–81, Academic Press, New York, 1979

  35. Lin F.-H.: Nonlinear theory of defects in nematic liquid crystals: Phase transitions and flow phenomena. Commun. Pure Appl. Math. 42(6), 789–814 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lin F.-H., Lin J.-Y., Wang C.-Y.: Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197(1), 297–336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lin F.-H., Liu C.: Nonparabolic dissipative system modeling the flow of liquid crystals. Comm. Pure Appl. Math. 48(5), 501–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lin F.-H., Liu C.: Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals. Discrete Contin. Dyn. Syst. 2(1), 1–23 (1996)

    Google Scholar 

  39. Lions, J.-L., Magenes, E.: Nonhomogeneous Boundary Value Problems and Applications, vol. 1, Springer, New York, 1972

  40. Paicu M., Zarnescu A.: Energy dissipation and regularity for a coupled Navier–Stokes and Q-tensor system. Arch. Ration. Mech. Anal. 203(1), 45–67 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Petzeltová H., Rocca E., Schimperna G.: On the long-time behavior of some mathematical models for nematic liquid crystals. Calc. Var. 46(3), 623–639 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rocca E., Sprekels J.: Optimal distributed control of a nonlocal convective Cahn–Hilliard equation by the velocity in 3D. SIAM J. Control Optim. 53(3), 1654–1680 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Simon J.: Compact sets in the space \({L^p(0,T; B)}\). Ann. Math. Pura Appl. 146(1), 65–96 (1987)

    Article  MATH  Google Scholar 

  44. Stewart, I.W.: The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction, Liquid Crystals Book Series. CRC Press, Boca Raton, 2004

  45. Sun H., Liu C.: On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete Contin. Dyn. Syst. 23(1&2), 455–475 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Taylor, M.: Partial Pifferential Equations, Vol. I Applied Math. Sciences, vol. 115, Springer, New York, 1996

  47. Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis, Second edition. North-Holland, Amsterdam, 1979

  48. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications. Grad. Stud. in Math., vol. 112. AMS, Providence, RI, 2010

  49. Wang W., Zhang P.-W., Zhang Z.-F.: Well-posedness of the Ericksen–Leslie system. Arch. Ration. Mech. Anal. 210(3), 837–855 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wu H.: Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete Contin. Dyn. Syst. 26(1), 379–396 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wu H., Xu X., Liu C.: On the general Ericksen–Leslie system: Parodi’s relation, well-posedness and stability. Arch. Ration. Mech. Anal. 208(1), 59–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhou, H., Choate, E.P., Wang, H.: Optical Fredericks transition in a nematic liquid crystal layer. In: Thakur, V.K., Kessler, M.R. (eds.) Liquid Crystalline Polymers Volume 2, Processing and Applications. Springer, Switzerland, pp. 265–295, 2015.

  53. Zhao X., Liu C.-C.: Optimal control of the convective Cahn–Hilliard equation. Appl. Anal. 92(5), 1028–1045 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhao X., Liu C.-C.: Optimal control for the convective Cahn–Hilliard equation in 2D case. Appl. Math. Optim. 70(1), 61–82 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zheng, S.: Nonlinear Evolution Equations, Pitman series Monographs and Survey in Pure and Applied Mathematics, 133, Chapman & Hall/CRC, Boca Raton, 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wu.

Additional information

Communicated by F. Lin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavaterra, C., Rocca, E. & Wu, H. Optimal Boundary Control of a Simplified Ericksen–Leslie System for Nematic Liquid Crystal Flows in 2D . Arch Rational Mech Anal 224, 1037–1086 (2017). https://doi.org/10.1007/s00205-017-1095-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1095-2

Navigation