Archive for Rational Mechanics and Analysis

, Volume 224, Issue 3, pp 1021–1036 | Cite as

Cusp Formation for a Nonlocal Evolution Equation

  • Vu Hoang
  • Maria Radosz


Córdoba et al. (Ann Math 162(3):1377–1389, 2005) introduced a nonlocal active scalar equation as a one-dimensional analogue of the surface-quasigeostrophic equation. It has been conjectured, based on numerical evidence, that the solution forms a cusp-like singularity in finite time. Up until now, no active scalar with nonlocal flux is known for which cusp formation has been rigorously shown. In this paper, we introduce and study a nonlocal active scalar, inspired by the Córdoba–Córdoba–Fontelos equation, and prove that either a cusp- or needle-like singularity forms in finite time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castro A., Córdoba D.: Infinite energy solutions of the surface quasi-geostrophic equation. Adv. Math. 225(4), 1820–1829 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Choi, K., Hou, T.Y., Kiselev, A., Luo, G., Šverák, V., Yao, Y.: On the finite-time blowup of a 1d model for the 3d axisymmetric Euler equations, Commun. Pure Appl. Math. arXiv:1407.4776 2014
  3. 3.
    Choi K., Kiselev A., Yao Y.: Finite time blow up for a 1d model of 2d Boussinesq system. Commun. Math. Phys. 334(3), 1667–1679 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Constantin P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. 44(4), 603–621 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Constantin P., Lax P.D., Majda A.: A simple one-dimensional model for the three-dimensional vorticity equation. Commun. Pure Appl. Math. 38(6), 715–724 (1985)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Constantin P., Majda A., Tabak E.: Formation of strong fronts in the 2-d quasigeostrophic thermal active scalar. Nonlinearity 7(6), 1495–1533 (1994)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Córdoba A., Córdoba D., Fontelos M.A.: Formation of singularities for a transport equation with nonlocal velocity. Ann. Math. 162(3), 1377–1389 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Do, T.: A discrete model for nonlocal transport equations with fractional dissipation, Commun. Math. Sci. arXiv:1412.3391 2014
  9. 9.
    Hou T.Y., Luo G.: Toward the finite-time blowup of the 3d axisymmetric Euler equations: A numerical investigation. Multiscale Model. Simul. 12(4), 1722–1776 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hou T.Y., Luo G.: Potentially singular solutions of the 3D axisymmetric Euler equations. Proc. Natl. Acad. Sci. USA 111(36), 12968–12973 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Hou T.Y., Li C.: Dynamic stability of the three-dimensional axisymmetric Navier–Stokes equations with swirl. Commun. Pure Appl. Math. 61(5), 661–697 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hou T.Y., Liu P.: Self-similar singularity of a 1D model for the 3D axisymmetric Euler equations. Res. Math. Sci. 2(1), 1–26 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kiselev A.: Nonlocal maximum principles for active scalars. Adv. Math. 227(5), 1806–1826 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kiselev A., Šverák V.: Small scale creation for solutions of the incompressible two dimensional Euler equation. Ann. Math. 180(3), 1205–1220 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Saffman P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1992)MATHGoogle Scholar
  16. 16.
    Silvestre L., Vicol V.: On a transport equation with nonlocal drift. Trans. Am. Math. Soc. 368, 6159–6188 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsRice UniversityHoustonUSA

Personalised recommendations