Skip to main content
Log in

Energy Scaling Law for a Single Disclination in a Thin Elastic Sheet

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider a single disclination in a thin elastic sheet of thickness h. We prove ansatz-free lower bounds for the free elastic energy in three different settings: first, for a geometrically fully non-linear plate model; second, for three-dimensional nonlinear elasticity; and third, for the Föppl-von Kármán plate theory. The lower bounds in the first and third result are optimal in the sense that we find upper bounds that are identical to the respective lower bounds in the leading order of h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Audoly, B., Pomeau, Y.: Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells. Oxford University Press, Oxford, 2010

  2. Ben Amar M., Pomeau Y.: Crumpled paper. Proc. R. Soc. Lond. Ser. A 453(1959), 729–755 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandman J., Kohn R.V., Nguyen H.-M.: Energy scaling laws for conically constrained thin elastic sheets. J. Elast. 113(2), 251–264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caspar, D.L.D., Klug, A.: Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24, 1962

  5. Cerda E., Chaieb S., Melo F., Mahadevan L.: Conical dislocations in crumpling. Nature 401, 46–49 (1999)

    Article  ADS  Google Scholar 

  6. Cerda E., Mahadevan L.: Conical surfaces and crescent singularities in crumpled sheets. Phys. Rev. Lett. 80, 2358–2361 (1998)

    Article  ADS  Google Scholar 

  7. Cerda E., Mahadevan L.: Confined developable elastic surfaces: cylinders, cones and the elastica. Proc. R. Soc. Lond. Ser. A 461(2055), 671–700 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Conti S., Maggi F.: Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal. 187(1), 1–48 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dervaux J., Ciarletta P., Ben Amar M.: Morphogenesis of thin hyperelastic plates: a constitutive theory of biological growth in the Föppl-von Kármán limit. J. Mech. Phys. Solids 57(3), 458–471 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. DiDonna B.A., Witten T.A.: Anomalous strength of membranes with elastic ridges. Phys. Rev. Lett. 87, 206105 (2001)

    Article  ADS  Google Scholar 

  11. Efrati E., Sharon E., Kupferman R.: Buckling transition and boundary layer in non-Euclidean plates. Phys. Rev. E 80(1), 016602 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Efrati E., Sharon E., Kupferman R.: Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57(4), 762–775 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Fonseca, I., Gangbo, W.: Degree theory in analysis and applications, vol. 2 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science Publications

  14. Friesecke G., James R.D., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Friesecke G., James R.D., Müller S.: A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gemmer J.A., Venkataramani S.C.: Shape selection in non-Euclidean plates. Phys. D Nonlinear Phenom. 240(19), 1536–1552 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gemmer J.A.: Venkataramani S.C., Defects and boundary layers in non-Euclidean plates. Nonlinearity 25(12), 3553 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Heidelberg, 2001

  19. Hornung P.: Approximation of flat \({W^{2, 2}}\) isometric immersions by smooth ones. Arch. Ration. Mech. Anal. 199(3), 1015–1067 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim J., Hanna J.A., Byun M., Santangelo C.D., Hayward R.C.: Designing responsive buckled surfaces by halftone gel lithography. Science 335(6073), 1201–1205 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Klein Y., Efrati E., Sharon E.: Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315(5815), 1116–1120 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kramer E.M., Witten T.A.: Stress condensation in crushed elastic manifolds. Phys. Rev. Lett. 78, 1303–1306 (1997)

    Article  ADS  Google Scholar 

  23. Kuiper, N.H.: On \({C^1}\)-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58, Indag. Math. 17, 545–556, 683–689, 1955

  24. Kupferman R., Moshe M., Solomon J.P.: Metric description of singular defects in isotropic materials. Arch. Ration. Mech. Anal. 216(3), 1009–1047 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lecumberry M., Müller S.: Stability of slender bodies under compression and validity of the von Kármán theory. Arch. Ration. Mech. Anal. 193(2), 255–310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lewicka M., Pakzad M.R.: Scaling laws for non-Euclidean plates and the \({W^{2,2}}\) isometric immersions of Riemannian metrics. ESAIM Control Optim. Calc. Var. 17(4), 1158–1173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lidmar J., Mirny L., Nelson D.R.: Virus shapes and buckling transitions in spherical shells. Phys. Rev. E 68(5), 051910 (2003)

    Article  ADS  Google Scholar 

  28. Lobkovsky A.: Boundary layer analysis of the ridge singularity in a thin plate. Phys. Rev. E 53, 3750–3759 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  29. Lobkovsky A., Gentges S., Li H., Morse D., Witten T.A.: Scaling properties of stretching ridges in a crumpled elastic sheet. Science 270(5241), 1482–1485 (1995)

    Article  ADS  Google Scholar 

  30. Lobkovsky A., Witten T.A.: Properties of ridges in elastic membranes. Phys. Rev. E 55, 1577–1589 (1997)

    Article  ADS  Google Scholar 

  31. Maz’ya, V.: Lectures on isoperimetric and isocapacitary inequalities in the theory of Sobolev spaces. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), vol. 338 of Contemporary Mathematics, pp. 307–340. Amer. Math. Soc., Providence, 2003

  32. Müller S., Olbermann H.: Almost conical deformations of thin sheets with rotational symmetry. SIAM J. Math. Anal. 46(1), 25–44 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Müller S., Olbermann H.: Conical singularities in thin elastic sheets. Calc. Var. Partial Differ. Equ. 49(3-4), 1177–1186 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nash J.: \({C^1}\) isometric imbeddings. Ann. Math. (2) 60, 383–396 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  35. Olbermann H.: Energy scaling law for the regular cone. J. Nonlinear Sci. 26, 287–314 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Pakzad M.R.: On the Sobolev space of isometric immersions. J. Differ. Geom. 66(1), 47–69 (2004)

    MathSciNet  MATH  Google Scholar 

  37. Pogorelov, A.V.: Extrinsic geometry of convex surfaces. American Mathematical Society, Providence, R.I., 1973. Translated from the Russian by Israel Program for Scientific Translations, Translations of Mathematical Monographs, vol. 35

  38. Romanov, A.E.: Mechanics and physics of disclinations in solids. Eur. J. Mech. A Solids 22(5), 727–741, 2003. 5th Euromech Solid Mechanics Conference (Thessaloniki, 2003)

  39. Seung H.S., Nelson D.R.: Defects in flexible membranes with crystalline order. Phys. Rev. A 38, 1005–1018 (1988)

    Article  ADS  Google Scholar 

  40. Simon, T.: \({\Gamma}\)-Equivalence for Nonlinear Plate Theories. Master’s thesis, Universität Bonn, 2014

  41. Venkataramani S.C.: Lower bounds for the energy in a crumpled elastic sheet—a minimal ridge. Nonlinearity 17(1), 301–312 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Witten T.A.: Stress focusing in elastic sheets. Rev. Mod. Phys. 79, 643–675 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Witten T.A., Li H.: Asymptotic shape of a fullerene ball. Europhys. Lett. 23(1), 51 (1993)

    Article  ADS  Google Scholar 

  44. Yavari A., Goriely A.: Riemann-Cartan geometry of nonlinear disclination mechanics. Math. Mech. Solids 18(1), 91–102 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Olbermann.

Additional information

Communicated by F. Otto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olbermann, H. Energy Scaling Law for a Single Disclination in a Thin Elastic Sheet. Arch Rational Mech Anal 224, 985–1019 (2017). https://doi.org/10.1007/s00205-017-1093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1093-4

Navigation