Advertisement

Archive for Rational Mechanics and Analysis

, Volume 224, Issue 3, pp 985–1019 | Cite as

Energy Scaling Law for a Single Disclination in a Thin Elastic Sheet

Article

Abstract

We consider a single disclination in a thin elastic sheet of thickness h. We prove ansatz-free lower bounds for the free elastic energy in three different settings: first, for a geometrically fully non-linear plate model; second, for three-dimensional nonlinear elasticity; and third, for the Föppl-von Kármán plate theory. The lower bounds in the first and third result are optimal in the sense that we find upper bounds that are identical to the respective lower bounds in the leading order of h.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audoly, B., Pomeau, Y.: Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells. Oxford University Press, Oxford, 2010Google Scholar
  2. 2.
    Ben Amar M., Pomeau Y.: Crumpled paper. Proc. R. Soc. Lond. Ser. A 453(1959), 729–755 (1997)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brandman J., Kohn R.V., Nguyen H.-M.: Energy scaling laws for conically constrained thin elastic sheets. J. Elast. 113(2), 251–264 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Caspar, D.L.D., Klug, A.: Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24, 1962Google Scholar
  5. 5.
    Cerda E., Chaieb S., Melo F., Mahadevan L.: Conical dislocations in crumpling. Nature 401, 46–49 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Cerda E., Mahadevan L.: Conical surfaces and crescent singularities in crumpled sheets. Phys. Rev. Lett. 80, 2358–2361 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Cerda E., Mahadevan L.: Confined developable elastic surfaces: cylinders, cones and the elastica. Proc. R. Soc. Lond. Ser. A 461(2055), 671–700 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Conti S., Maggi F.: Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal. 187(1), 1–48 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dervaux J., Ciarletta P., Ben Amar M.: Morphogenesis of thin hyperelastic plates: a constitutive theory of biological growth in the Föppl-von Kármán limit. J. Mech. Phys. Solids 57(3), 458–471 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    DiDonna B.A., Witten T.A.: Anomalous strength of membranes with elastic ridges. Phys. Rev. Lett. 87, 206105 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Efrati E., Sharon E., Kupferman R.: Buckling transition and boundary layer in non-Euclidean plates. Phys. Rev. E 80(1), 016602 (2009)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Efrati E., Sharon E., Kupferman R.: Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57(4), 762–775 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fonseca, I., Gangbo, W.: Degree theory in analysis and applications, vol. 2 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science PublicationsGoogle Scholar
  14. 14.
    Friesecke G., James R.D., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Friesecke G., James R.D., Müller S.: A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236 (2006)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gemmer J.A., Venkataramani S.C.: Shape selection in non-Euclidean plates. Phys. D Nonlinear Phenom. 240(19), 1536–1552 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gemmer J.A.: Venkataramani S.C., Defects and boundary layers in non-Euclidean plates. Nonlinearity 25(12), 3553 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Heidelberg, 2001Google Scholar
  19. 19.
    Hornung P.: Approximation of flat \({W^{2, 2}}\) isometric immersions by smooth ones. Arch. Ration. Mech. Anal. 199(3), 1015–1067 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kim J., Hanna J.A., Byun M., Santangelo C.D., Hayward R.C.: Designing responsive buckled surfaces by halftone gel lithography. Science 335(6073), 1201–1205 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Klein Y., Efrati E., Sharon E.: Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315(5815), 1116–1120 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kramer E.M., Witten T.A.: Stress condensation in crushed elastic manifolds. Phys. Rev. Lett. 78, 1303–1306 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    Kuiper, N.H.: On \({C^1}\)-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58, Indag. Math. 17, 545–556, 683–689, 1955Google Scholar
  24. 24.
    Kupferman R., Moshe M., Solomon J.P.: Metric description of singular defects in isotropic materials. Arch. Ration. Mech. Anal. 216(3), 1009–1047 (2015)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lecumberry M., Müller S.: Stability of slender bodies under compression and validity of the von Kármán theory. Arch. Ration. Mech. Anal. 193(2), 255–310 (2009)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Lewicka M., Pakzad M.R.: Scaling laws for non-Euclidean plates and the \({W^{2,2}}\) isometric immersions of Riemannian metrics. ESAIM Control Optim. Calc. Var. 17(4), 1158–1173 (2011)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Lidmar J., Mirny L., Nelson D.R.: Virus shapes and buckling transitions in spherical shells. Phys. Rev. E 68(5), 051910 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Lobkovsky A.: Boundary layer analysis of the ridge singularity in a thin plate. Phys. Rev. E 53, 3750–3759 (1996)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Lobkovsky A., Gentges S., Li H., Morse D., Witten T.A.: Scaling properties of stretching ridges in a crumpled elastic sheet. Science 270(5241), 1482–1485 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    Lobkovsky A., Witten T.A.: Properties of ridges in elastic membranes. Phys. Rev. E 55, 1577–1589 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    Maz’ya, V.: Lectures on isoperimetric and isocapacitary inequalities in the theory of Sobolev spaces. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), vol. 338 of Contemporary Mathematics, pp. 307–340. Amer. Math. Soc., Providence, 2003Google Scholar
  32. 32.
    Müller S., Olbermann H.: Almost conical deformations of thin sheets with rotational symmetry. SIAM J. Math. Anal. 46(1), 25–44 (2014)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Müller S., Olbermann H.: Conical singularities in thin elastic sheets. Calc. Var. Partial Differ. Equ. 49(3-4), 1177–1186 (2014)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Nash J.: \({C^1}\) isometric imbeddings. Ann. Math. (2) 60, 383–396 (1954)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Olbermann H.: Energy scaling law for the regular cone. J. Nonlinear Sci. 26, 287–314 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Pakzad M.R.: On the Sobolev space of isometric immersions. J. Differ. Geom. 66(1), 47–69 (2004)MathSciNetMATHGoogle Scholar
  37. 37.
    Pogorelov, A.V.: Extrinsic geometry of convex surfaces. American Mathematical Society, Providence, R.I., 1973. Translated from the Russian by Israel Program for Scientific Translations, Translations of Mathematical Monographs, vol. 35Google Scholar
  38. 38.
    Romanov, A.E.: Mechanics and physics of disclinations in solids. Eur. J. Mech. A Solids 22(5), 727–741, 2003. 5th Euromech Solid Mechanics Conference (Thessaloniki, 2003)Google Scholar
  39. 39.
    Seung H.S., Nelson D.R.: Defects in flexible membranes with crystalline order. Phys. Rev. A 38, 1005–1018 (1988)ADSCrossRefGoogle Scholar
  40. 40.
    Simon, T.: \({\Gamma}\)-Equivalence for Nonlinear Plate Theories. Master’s thesis, Universität Bonn, 2014Google Scholar
  41. 41.
    Venkataramani S.C.: Lower bounds for the energy in a crumpled elastic sheet—a minimal ridge. Nonlinearity 17(1), 301–312 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Witten T.A.: Stress focusing in elastic sheets. Rev. Mod. Phys. 79, 643–675 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Witten T.A., Li H.: Asymptotic shape of a fullerene ball. Europhys. Lett. 23(1), 51 (1993)ADSCrossRefGoogle Scholar
  44. 44.
    Yavari A., Goriely A.: Riemann-Cartan geometry of nonlinear disclination mechanics. Math. Mech. Solids 18(1), 91–102 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität LeipzigLeipzigGermany

Personalised recommendations