Skip to main content
Log in

Local Invertibility in Sobolev Spaces with Applications to Nematic Elastomers and Magnetoelasticity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We define a class of deformations in \({W^{1,p}(\Omega,\mathbb{R}^n)}\), \({p > n-1}\), with a positive Jacobian, that do not exhibit cavitation. We characterize that class in terms of the non-negativity of the topological degree and the equality Det = det (that the distributional determinant coincides with the pointwise determinant of the gradient). Maps in this class are shown to satisfy a property of weak monotonicity, and, as a consequence, they enjoy an extra degree of regularity. We also prove that these deformations are locally invertible; moreover, the neighbourhood of invertibility is stable along a weak convergent sequence in \({W^{1,p}}\), and the sequence of local inverses converges to the local inverse. We use those features to show weak lower semicontinuity of functionals defined in the deformed configuration and functionals involving composition of maps. We apply those results to prove the existence of minimizers in some models for nematic elastomers and magnetoelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agostiniani V., DeSimone A.: Γ-convergence of energies for nematic elastomers in the small strain limit. Contin. Mech. Thermodyn., 23, 257–274 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York, 2000

  3. Ansini N., Garroni A.: Γ-Convergence of functionals on divergence-free fields. ESAIM Control Optim. Calc. Var., 13, 809–828 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Astala, K., Iwaniec, T., Martin, G.: Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Mathematical Series, Vol. 48. Princeton University Press, Princeton, NJ, 2009

  5. Ball, J. M.: Constitutive inequalities and existence theorems in nonlinear elastostatics. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium (Edinburgh, 1976), Vol. I, Pitman, London, pp. 187–241. Res. Notes in Math., No. 17, 1977

  6. Ball J. M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 63, 337–403 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ball J. M.: Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinburgh Sect. A, 88, 315–328 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ball J. M., Currie J. C., Olver P. J.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal.: 41, 135–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ball J. M., Majumdar A.: Nematic liquid crystals: from Maier-Saupe to a continuum theory. Mol. Cryst. Liq. Cryst., 525, 1–11 (2009)

    Article  Google Scholar 

  10. Ball J. M., Murat F.: Remarks on Chacon’s biting lemma. Proc. Am. Math. Soc., 107, 655–663 (1989)

    MathSciNet  MATH  Google Scholar 

  11. Barchiesi M., DeSimone A.: Frank energy for nematic elastomers: a nonlinear model. ESAIM Control Optim. Calc. Var., 21, 372–377 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bourbaki, N.: Elements of Mathematics. General Topology. Part 1. Hermann, Paris, 1966

  13. Brooks J. K., Chacon R. V.: Continuity and compactness of measures. Adv. Math., 37, 16–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Calderer, M. C., Garavito Garzón, C. A., Yan, B.: A Landau-de Gennes theory of liquid crystal elastomers. Discrete Contin. Dyn. Syst. Ser. S, 8, 283–302, 2015

  15. Ciarlet P. G., Nečas J.: Injectivity and self-contact in nonlinear elasticity. Arch. Rational Mech. Anal., 97, 171–188 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Conti, S., De Lellis, C.: Some remarks on the theory of elasticity for compressible Neohookean materials. Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (5), 2, 521–549, 2003

  17. Dacorogna, B.: Direct methods in the calculus of variations. Applied Mathematical Sciences, Vol. 78, 2nd Edn. Springer, New York, 2008

  18. Dacorogna B., Fonseca I.: A minimization problem involving variation of the domain. Commun. Pure Appl. Math., 45, 871–897 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. De Gennes, P., Prost, J. J.: The Physics of Liquid Crystals. Oxford University Press, Oxford, 1993

  20. De Lellis, C., Ghiraldin, F.: An extension of the identity Det = det. C. R. Math. Acad. Sci. Paris, 348, 973–976, 2010

  21. Deimling K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  22. Deny J., Lions J.L.: Les espaces du type de Beppo Levi. Ann. Inst. Fourier Grenoble, 5, 305–370 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  23. DeSimone A.: Energy minimizers for large ferromagnetic bodies. Arch. Rational Mech. Anal., 125, 99–143 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  24. DeSimone A., Dolzmann G.: Existence of minimizers for a variational problem in two-dimensional nonlinear magnetoelasticity. Arch. Rational Mech. Anal., 144, 107–120 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. DeSimone A., James R. D.: A constrained theory of magnetoelasticity. J. Mech. Phys. Solids, 50, 283–320 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. DeSimone A., Teresi L.: Elastic energies for nematic elastomers. Eur. Phys. J. E, 29, 191–204 (2009)

    Article  Google Scholar 

  27. Dieudonné, J.: Treatise on Analysis, Vol. III, Academic Press, New York, 1972

  28. D’Onofrio L., Hencl S., Malý J., Schiattarella R.: Note on Lusin (N) condition and the distributional determinant. J. Math. Anal. Appl., 439, 171–182 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Evans, L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, FL, 1992

  30. Federer H.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  31. Fonseca I., Gangbo W.: Degree Theory in Analysis and Applications. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  32. Fonseca I., Gangbo W.: Local invertibility of Sobolev functions. SIAM J. Math. Anal., 26, 280–304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fonseca, I., Leoni, G.: Modern methods in the calculus of variations: \({L^p}\) spaces. Springer Monographs in Mathematics. Springer, New York, 2007

  34. Fonseca, I., Müller, S.: \({\mathcal{A}}\)-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal., 30, 1355–1390, 1999

  35. Fonseca I., Parry G.: Equilibrium configurations of defective crystals. Arch. Rational Mech. Anal., 120, 245–283 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Fonseca I., Parry G.: On a class of invariant functionals. Proc. R. Soc. Lond. Ser. A, 436, 317–329 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Gantmacher, F. R.: The Theory of Matrices, Vol. 1. Chelsea Publishing Co., New York, 1959

  38. Giaquinta, M., Modica, G., Souček, J.: Cartesian Currents in the Calculus of Variations. I. Springer, Berlin, 1998

  39. Giaquinta, M., Modica, G., Souček, J.: Cartesian Currents in the Calculus of Variations. II. Springer, Berlin, 1998

  40. Goffman C., Ziemer W. P.: Higher dimensional mappings for which the area formula holds. Ann. Math. (2) 92, 482–488 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hajlasz P., Malý J.: Approximation in Sobolev spaces of nonlinear expressions involving the gradient. Ark. Mat., 40, 245–274 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Henao D., Mora-Corral C.: Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity. Arch. Rational Mech. Anal., 197, 619–655 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Henao D., Mora-Corral C.: Fracture surfaces and the regularity of inverses for BV deformations. Arch. Rational Mech. Anal., 201, 575–629 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Henao D., Mora-Corral C.: Lusin’s condition and the distributional determinant for deformations with finite energy. Adv. Calc. Var., 5, 355–409 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Henao D., Mora-Corral C.: Regularity of inverses of Sobolev deformations with finite surface energy. J. Funct. Anal., 268, 2356–2378 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Henao D., Mora-Corral C., Xu X.: Γ-convergence approximation of fracture and cavitation in nonlinear elasticity. Arch. Rational Mech. Anal., 216, 813–879 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Hencl, S., Koskela, P.: Lectures on mappings of finite distortion. Lecture Notes in Mathematics, Vol. 2096. Springer, Cham, 2014

  48. Iwaniec T., Onninen J.: Hyperelastic deformations of smallest total energy. Arch. Rational Mech. Anal., 194, 927–986 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. James R. D., Kinderlehrer D.: Frustration in ferromagnetic materials. Contin. Mech. Thermodyn., 2, 215–239 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  50. James, R. D., Kinderlehrer, D.: Theory of magnetostriction with application to \({\rm Tb}_x{\rm Dy}_{1-x}{\rm Fe}_2\). Philos. Mag. B, 68, 237–274, 1993

  51. Kovalev L. V., Onninen J.: On invertibility of Sobolev mappings. J. Reine Angew. Math., 656, 1–16 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kovalev L. V., Onninen J., Rajala K.: Invertibility of Sobolev mappings under minimal hypotheses. Ann. Inst. Henri Poincaré Anal. Non Linéaire, 27, 517–528 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Kružík, M., Stefanelli, U., Zeman, J.: Existence results for incompressible magnetoelasticity. Discrete Contin. Dyn. Syst., 35, 2615–2623, 2015

  54. Llavona, J. G.: Approximation of continuously differentiable functions. North-Holland Mathematics Studies, Vol. 130. North-Holland Publishing Co., Amsterdam, 1986

  55. Majumdar A.: Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory. Eur. J. Appl. Math., 21, 181–203 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Manfredi J. J.: Weakly monotone functions. J. Geom. Anal., 4, 393–402 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  57. Marcus M., Mizel V. J.: Transformations by functions in Sobolev spaces and lower semicontinuity for parametric variational problems. Bull. Am. Math. Soc., 79, 790–795 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  58. Maz’ya, V., Sobolev spaces with applications to elliptic partial differential equations. Grundlehren der Mathematischen Wissenschaften, Vol. 342, 2nd Edn. Springer, Heidelberg, 2011

  59. Müller S.: Weak continuity of determinants and nonlinear elasticity. C. R. Acad. Sci. Paris Sér. I Math., 307, 501–506 (1988)

    MathSciNet  MATH  Google Scholar 

  60. Müller, S.: Det = det. A remark on the distributional determinant. C. R. Acad. Sci. Paris Sér. I Math., 311, 13–17, 1990

  61. Müller S., Spector S. J.: An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rational Mech. Anal., 131, 1–66 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Müller S., Spector S. J., Tang Q.: Invertibility and a topological property of Sobolev maps. SIAM J. Math. Anal., 27, 959–976 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  63. Müller S., Tang Q., Yan B. S.: On a new class of elastic deformations not allowing for cavitation. Ann. Inst. Henri Poincaré Anal. Non Linéaire, 11, 217–243 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  64. Murat F.: Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8, 69–102 (1981)

    MathSciNet  MATH  Google Scholar 

  65. Palombaro, M.; Rank-(n−1) convexity and quasiconvexity for divergence free fields. Adv. Calc. Var., 3, 279–285, 2010

  66. Palombaro M., Smyshlyaev V. P.: Relaxation of three solenoidal wells and characterization of extremal three-phase H-measures. Arch. Rational Mech. Anal., 194, 775–822 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Ponomarev, S. P.: Property N of homeomorphisms of the class \({{W}^{1,p}}\). Sib. Math. J., 28, 291–298, 1987

  68. Reshetnyak, Y. G.: Space mappings with bounded distortion. Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, Vol. 73, 1989

  69. Rybka P., Luskin M.: Existence of energy minimizers for magnetostrictive materials. SIAM J. Math. Anal., 36, 2004–2019 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  70. Šverák, V.: Regularity properties of deformations with finite energy. Arch. Rational Mech. Anal., 100, 105–127, 1988

  71. Tang Q.: Almost-everywhere injectivity in nonlinear elasticity. Proc. R. Soc. Edinb. Sect. A, 109, 79–95 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  72. Vodop’yanov S.K.: Topological and geometrical properties of mappings with summable Jacobian in Sobolev classes. I. Sib. Math. J., 41, 19–39 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  73. Vodop’yanov, S. K., Gol’dšteĭn, V. M.: Quasiconformal mappings, and spaces of functions with first generalized derivatives. Sib. Math. J., 17, 515–531, 715, 1976

  74. Warner M., Terentjev E.: Liquid Crystal Elastomers. Clarendon Press, Oxford (2007)

    MATH  Google Scholar 

  75. Ziemer W. P.: Weakly Differentiable Functions. Springer, New York (1989)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Mora-Corral.

Additional information

Communicated by I. Fonseca

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barchiesi, M., Henao, D. & Mora-Corral, C. Local Invertibility in Sobolev Spaces with Applications to Nematic Elastomers and Magnetoelasticity. Arch Rational Mech Anal 224, 743–816 (2017). https://doi.org/10.1007/s00205-017-1088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1088-1

Navigation