Skip to main content
Log in

From Microscopic Theory to Macroscopic Theory: a Systematic Study on Modeling for Liquid Crystals

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we propose a systematic way of liquid crystal modeling to build connections between microscopic theory and macroscopic theory. In the first part, we propose a new Q-tensor model based on Onsager’s molecular theory for liquid crystals. The Oseen–Frank theory can be recovered from the derived Q-tensor theory by making a uniaxial assumption, and the coefficients in the Oseen–Frank model can be examined. In addition, the smectic-A phase can be characterized by the derived macroscopic model. In the second part, we derive a new dynamic Q-tensor model from Doi’s kinetic theory by the Bingham closure, which obeys the energy dissipation law. Moreover, the Ericksen–Leslie system can also be derived from new Q-tensor system by making an expansion near the local equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen M.P., Frenkel D.: Calculation of liquid-crystal Frank constants by computer simulation. Phys. Rev. A 37, 1813–1816 (1988)

    Article  ADS  Google Scholar 

  2. Bingham C.: An antipodally symmetric distribution on the sphere. Ann. Stat. 2, 1201–1225 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ball J.M., Majumdar A.: Nematic liquid crystals: from Maier–Saupe to a continuum theory. Mol. Cryst. Liq. Cryst. 525, 1–11 (2010)

    Article  Google Scholar 

  4. Beris, A.N., Edwards, B.J.: Thermodynamics of Flowing Systems with Internal Microstructure. Oxford Engrg. Sci. Ser. 36. Oxford University Press, Oxford, New York, 1994

  5. Brazovskii S.A.: Phase transition of an isotropic system to a nonuniform state. Sov. Phys. JETP 41, 85 (1975)

    ADS  Google Scholar 

  6. Caflisch, R.E.: The fluid dynamic limit of the nonlinear Boltzmann equation. Comm. Pure Appl. Math. 33, 651C666 (1980)

  7. Carnahan N.F., Starling K.E.: Equation of state for nonattracting rigid spheres. J. Chem. Phys 51, 635 (1969)

    Article  ADS  Google Scholar 

  8. Chaubal C.V., Leal L.G.: A closure approximation for liquid-crystalline polymermodels based on parametric density estimation. J. Rheol. 42, 177–201 (1998)

    Article  ADS  Google Scholar 

  9. Chaubal C.V., Leal L.G., Fredrickson G.H.: A comparison of closure approximations for the Doi theory of LCPs. J. Rheol. 39, 73–103 (1995)

    Article  ADS  Google Scholar 

  10. Chen J., Lubensky T.: Landau-ginzburg mean-field theory for the nematic to smectic c and nematic to smectic a liquid crystal transistions. Phys. Rev. A 14, 1202–1297 (1976)

    Article  ADS  Google Scholar 

  11. Cintra J.S., Tucker C.L.: Orthotropic closure approximations for flow-induced fiber orientation. J. Rheol. 39, 1095 (1995)

    Article  ADS  Google Scholar 

  12. de Gennes P.G., Prost J.: The Physics of Liquid Crystals. Oxford University Press, USA (1995)

    Google Scholar 

  13. Doi M.: Molecular dynamics and rheological properties of concentrated solutions of rod like polymers in isotropic and liquid crystalline phases. J Polym Sci Polym Phys Edn. 19, 229–243 (1981)

    Article  ADS  Google Scholar 

  14. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University Press, Oxford, UK, 1986

  15. Durand G., Lger L., Rondelez F, Veyssie M.: Quasielastic Rayleigh scattering in nematic liquid crystals. Phys. Rev. Lett. 22, 1361–1363 (1969)

    Article  Google Scholar 

  16. E, W., Zhang, P.: A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit. Methods Appl. Anal. 13, 181–198 (2006)

  17. Ericksen J.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 22–34 (1961)

    Article  MathSciNet  Google Scholar 

  18. Ericksen J.: Liquid crystals with variable degree of orientation. Arch. Rat. Mech. Anal. 113, 97–120 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fatkullin, I., Slastikov, V.: Critical points of the Onsager functional on a sphere. Nonlinearity 18, 2565–2580 (2005)

  20. Feng, J., Chaubal, C.V., Leal, L.G.: Closure approximations for the Doi theory: Which to use in simulating complex flows of liquid-crystalline polymers? J. Rheol. 42, 1095–1109 (1998)

  21. Feng, J., Sgalari, G., Leal, L.G.: A theory for flowing nematic polymers with orientational distortion. J. Rheol. 44, 1085–1101 (2000)

  22. Frederiks, V., Zolina, V.: Forces causing the orentation of an anisotropic liquid. Trans. Faraday Soc. 29, 919 (1933)

  23. Grosso M., Maffettone P.L., Dupret F.: A closure approximation for nematic liquid crystals based on the canonical distribution subspace theory. Rheologica Acta 39, 301–310 (2000)

    Article  Google Scholar 

  24. Hinch, E.J., Leal, L.G.: Constitutive equations in suspension mechanics. Part II. Approximation forms for a suspension of rigid particles affected by Brownian rotations. J. Fluid Mech. 76, 187–208 (1976)

  25. Hornreich R.M., Shtrikman S.: Landau theory of blue phases. Mol. Cryst. Liq. Cryst. 165, 183–211 (1988)

    Google Scholar 

  26. Ilg, P., Karlin, I.V., Kröger, M., Öttinger, H.C.: Canonical distribution functions in polymer dynamics (II): liquid-crystalline polymers. Physica A 319, 134–150 (2003)

  27. Kuzuu N., Doi M.: Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation. J. Phys. Soc. Japan 52, 3486–3494 (1983)

    Article  ADS  Google Scholar 

  28. Lee S.-D., Meyer R.B.: Computations of the phase equilibrium, elastic constants, and viscosities of a hard-rod nematic liquid crystal. J. Chem. Phys., 84, 3443–3448 (1986)

    Article  ADS  Google Scholar 

  29. Leslie F.M.: Some constitutive equations for liquid crystals. Arch. Rat. Mech. Anal. 28, 265–283 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lin, F.-H., Liu, C.: Existence of solutions for the Ericksen–Leslie system. Arch. Ration. Mech. Anal. 154, 135–156 (2000)

  31. Liu, H., Zhang, H., Zhang, P: Axial symmetry and classification of stationary solutions of Doi–Onsager equation on the sphere with Maier–Saupe potential. Comm. Math. Sci. 3, 201–218 (2005)

  32. Maier, W., Saupe, A.: Eine einfache molekulare Theorie des nematischen kristallinflussigen Zustandes. Z. Naturf. A 13, 564 (1958)

  33. Maier, W., Saupe, A.: Eine einfache molekularstatistische Theorie der nematischen kristallinflssigen Phase. Teil I. Z. Naturf. A 14a, 882 (1959)

  34. Maier, W., Saupe, A.: Eine einfache molekularstatistische Theorie der nematischen kristallinflssigen Phase. Teil II. Z. Naturf. A 15a, 287 (1960)

  35. Majumdar A.: Equilibrium order parameters of liquid crystals in the Landau-De Gennes theory. Eur. J. Appl. Math. 21, 181–203 (2010)

    Article  MATH  Google Scholar 

  36. Majumdar A., Zarnescu A.: Landau-De Gennes theory of nematic liquid crystals: the Oseen–Frank limit and beyond. Arch. Rat. Mech. Anal. 196, 227–280 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Marrucci G., Greco F.: The elastic constants of Maier–Saupe rodlike molecule nematics. Mol. Cryst. Liq. Cryst. 206, 17–30 (1991)

    Article  Google Scholar 

  38. McMillan, W.L.: Simple molecular model for the smectic A phase of liquid crystals. Phys. Rev. A 4, 1238 (1971)

  39. Mottram, N.J., Newton, C.: Introduction to Q-tensor theory. University of Strathclyde, Department of Mathematics, Research Report, 10 (2004)

  40. Onsager, L.: The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 51, 627–659 (1949)

  41. Oseen C.W.: The theory of liquid crystals. Trans Faraday Soc 29, 883–899 (1933)

    Article  Google Scholar 

  42. Parodi O.: Stress tensor for a nematic liquid crystal. Journal de Physique 31, 581–584 (1970)

    Article  Google Scholar 

  43. Prost, J., Gasparoux, H.: Determination of twist viscosity coefficient in the nematic mesophases. Phys. Lett. A 36, 245–246 (1971)

  44. Qian, T., Sheng, P.: Generalized hydrodynamic equations for nematic liquid crystals. Phys. Rev. E 58, 7475–7485 (1998)

  45. Sonnet, A.M., Maffettone, P.L., Virga, E.G.: Continuum theory for nematic liquid crystals with tensorial order. J. Non-Newtonian Fluid Mech. 119, 51–59 (2004)

  46. Srivastava, A., Singh, S.: Elastic constants of nematic liquid crystals of uniaxial symmetry. J. Phys. Condens. Matter 16, 7169 (2004)

  47. Wang Q.: Biaxial steady states and their stability in shear flows of liquid crystal polymers. J. Rheol. 41, 943–970 (1997)

    Article  ADS  Google Scholar 

  48. Wang Q.: A hydrodynamic theory for solutions of nonhomogeneous nematic liquid crystalline polymers of different configurations. Journal of Chemical Physics 116, 9120–9136 (2002)

    Article  ADS  Google Scholar 

  49. Wang, Q., E, W., Liu, C., Zhang, P.: Kinetic theories for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential. Phys. Review E 65(2002), Art. No. 051504; Corrections: 71(4): Art. No. 049902 (2005)

  50. Wang, W., Zhang, P., Zhang, Z.: The small Deborah number limit of the Doi–Onsager equation to the Ericksen–Leslie equation. arXiv:1206.5480

  51. Wang, W., Zhang, P., Zhang, Z.: Rigorous derivation from Landau-de Gennes theory to Ericksen–Leslie theory, arXiv:1307.0986

  52. Xu J., Zhang P.: From microscopic theory to macroscopic theory-symmetries and order parameters of rigid molecules. Sci. China Math. 57, 443–468 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  53. Yu H., Zhang P.: A kinetic-hydrodynamic simulation of microstructure of liquid crystal polymers in plane shear flow. J. Non-Newtonian Fluid Mech. 141, 116–127 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingwen Zhang.

Additional information

Communicated by W. E

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Luo, Y., Wang, W. et al. From Microscopic Theory to Macroscopic Theory: a Systematic Study on Modeling for Liquid Crystals. Arch Rational Mech Anal 215, 741–809 (2015). https://doi.org/10.1007/s00205-014-0792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0792-3

Keywords

Navigation