Advertisement

Archives of Toxicology

, Volume 93, Issue 7, pp 1893–1902 | Cite as

Bioactivation of the tobacco carcinogens 4-aminobiphenyl (4-ABP) and 2-amino-9H-pyrido[2,3-b]indole (AαC) in human bladder RT4 cells

  • Medjda Bellamri
  • Lihua Yao
  • Radha Bonala
  • Francis Johnson
  • Linda B. Von Weymarn
  • Robert J. TureskyEmail author
Toxicokinetics and Metabolism
  • 204 Downloads

Abstract

Occupational and tobacco exposure to aromatic amines (AAs) including 4-aminobiphenyl (4-ABP) and 2-naphthylamine (2-NA) are associated with bladder cancer (BC) risk. Several epidemiological studies have also reported a possible role for structurally related heterocyclic aromatic amines (HAAs) formed in tobacco smoke or cooked meats with BC risk. We had screened for DNA adducts of 4-ABP, 2-NA, and several prominent HAAs formed in tobacco smoke or grilled meats including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) in the bladder DNA of BC patients, using liquid chromatography/mass spectrometry. We detected DNA adducts of 4-ABP, but not adducts of the other carcinogens. In this study, we have examined the capacity of RT4 cells, an epithelial human bladder cell line, to bioactivate AAs and HAAs to DNA damaging agents, which may contribute to BC. 4-ABP and AαC formed DNA adducts, but DNA adducts of 2-NA, PhIP, and MeIQx were not detected. 4-ABP DNA adducts were formed at tenfold higher levels than AαC adducts. Pretreatment of RT4 cells with α-naphthoflavone (1–10 µM), a specific cytochrome P450 1 (CYP1) inhibitor, decreased AαC adduct formation by 50% but did not affect the level of 4-ABP adducts. However, cell pretreatment with 8-methoxypsoralen (0.1–1 µM), a potent inhibitor of CYP2A, resulted in a 90% decrease of 4-ABP DNA adducts levels. These data signify that CYP2A and CYP1A isoforms expressed in the target urothelium bioactivate 4-ABP and AαC, respectively, and may be a critical feature of aromatic amine-induced urinary bladder carcinogenesis. The bioactivation of other tobacco and environmental AAs by bladder CYPs and their ensuing bladder DNA damage warrants further study.

Keywords

Bladder cancer Aromatic amines Heterocyclic aromatic amines 4-Aminobiphenyl 2-Amino-9H-pyrido[2,3-b]indole DNA adduct 

Notes

Funding

This work is supported by R01ES019564 and R01ES030559 (R. J. T.) from the National Institute of Environmental Health Sciences and by R01CA220367 (R. J. T.) from the National Cancer Institute, National Institutes of Health. Mass spectrometry was carried out in the Analytical Biochemistry Share Resources of the Masonic Cancer Center, the University of Minnesota, funded in part by Cancer Center Support Grant CA-077598. The Turesky laboratory greatfully acknowledges the support of the Masonic Chair in Cancer Causation, University of Minnesota.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

204_2019_2486_MOESM1_ESM.docx (875 kb)
Supplementary material 1 (DOCX 875 kb)

References

  1. Baker SC, Arlt VM, Indra R et al (2018) Differentiation-associated urothelial cytochrome P450 oxidoreductase predicates the xenobiotic-metabolizing activity of “luminal” muscle-invasive bladder cancers. Mol Carcinog 57(5):606–618.  https://doi.org/10.1002/mc.22784 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Balbi JC, Larrinaga MT, De Stefani E et al (2001) Foods and risk of bladder cancer: a case-control study in Uruguay. Eur J Cancer Prev 10(5):453–458CrossRefPubMedGoogle Scholar
  3. Bellamri M, Le Hegarat L, Vernhet L, Baffet G, Turesky RJ, Langouet S (2016) Human T lymphocytes bioactivate heterocyclic aromatic amines by forming DNA adducts. Environ Mol Mutagen 57(9):656–667.  https://doi.org/10.1002/em.22059 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bellamri M, Le Hegarat L, Turesky RJ, Langouet S (2017) Metabolism of the tobacco carcinogen 2-amino-9h-pyrido[2,3-b]indole (AalphaC) in primary human hepatocytes. Chem Res Toxicol 30(2):657–668.  https://doi.org/10.1021/acs.chemrestox.6b00394 CrossRefPubMedGoogle Scholar
  5. Bessette EE, Goodenough AK, Langouet S et al (2009) Screening for DNA adducts by data-dependent constant neutral loss-triple stage mass spectrometry with a linear quadrupole ion trap mass spectrometer. Anal Chem 81(2):809–819.  https://doi.org/10.1021/ac802096p CrossRefPubMedPubMedCentralGoogle Scholar
  6. Burger M, Catto JW, Dalbagni G et al (2013) Epidemiology and risk factors of urothelial bladder cancer. Eur Urol 63(2):234–241.  https://doi.org/10.1016/j.eururo.2012.07.033 CrossRefPubMedGoogle Scholar
  7. Burke MD, Mayer RT (1983) Differential effects of phenobarbitone and 3-methylcholanthrene induction on the hepatic microsomal metabolism and cytochrome P-450-binding of phenoxazone and a homologous series of its n-alkyl ethers (alkoxyresorufins). Chem Biol Interact 45(2):243–258CrossRefPubMedGoogle Scholar
  8. Cai T, Bellamri M, Ming X, Koh WP, Yu MC, Turesky RJ (2017) Quantification of hemoglobin and white blood cell DNA adducts of the tobacco carcinogens 2-amino-9H-pyrido[2,3-b]indole and 4-aminobiphenyl formed in humans by nanoflow liquid chromatography/ion trap multistage mass spectrometry. Chem Res Toxicol 30(6):1333–1343.  https://doi.org/10.1021/acs.chemrestox.7b00072 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Danon A, Zenser TV, Thomasson DL, Davis BB (1986) Eicosanoid synthesis by cultured human urothelial cells: potential role in bladder cancer. Cancer Res 46(11):5676–5681PubMedGoogle Scholar
  10. DeMarini DM (2004) Genotoxicity of tobacco smoke and tobacco smoke condensate: a review. Mutat Res 567(2–3):447–474.  https://doi.org/10.1016/j.mrrev.2004.02.001 CrossRefPubMedGoogle Scholar
  11. Fernandez-Salguero P, Hoffman SM, Cholerton S et al (1995) A genetic polymorphism in coumarin 7-hydroxylation: sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am J Hum Genet 57(3):651–660PubMedPubMedCentralGoogle Scholar
  12. Ferrucci LM, Sinha R, Ward MH et al (2010) Meat and components of meat and the risk of bladder cancer in the NIH-AARP Diet and Health Study. Cancer 116(18):4345–4353.  https://doi.org/10.1002/cncr.25463 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fu Y, Zhao G, Wang S et al (2014) Simultaneous determination of fifteen heterocyclic aromatic amines in the urine of smokers and nonsmokers using ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1333:45–53.  https://doi.org/10.1016/j.chroma.2014.01.057 CrossRefPubMedGoogle Scholar
  14. Goodenough AK, Schut HA, Turesky RJ (2007) Novel LC-ESI/MS/MS(n) method for the characterization and quantification of 2′-deoxyguanosine adducts of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by 2-D linear quadrupole ion trap mass spectrometry. Chem Res Toxicol 20(2):263–276.  https://doi.org/10.1021/tx0601713 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Guo J, Villalta PW, Weight CJ et al (2018) Targeted and untargeted detection of DNA adducts of aromatic amine carcinogens in human bladder by ultra-performance liquid chromatography-high-resolution mass spectrometry. Chem Res Toxicol 31(12):1382–1397.  https://doi.org/10.1021/acs.chemrestox.8b00268 CrossRefPubMedGoogle Scholar
  16. Hoffmann D, Hoffmann I, El-Bayoumy K (2001) The less harmful cigarette: a controversial issue. A tribute to Ernst L. Wynder. Chem Res Toxicol 14(7):767–790.  https://doi.org/10.1021/tx000260u CrossRefPubMedGoogle Scholar
  17. IARC (2004) Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum 83:1–1438Google Scholar
  18. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90.  https://doi.org/10.3322/caac.20107 CrossRefPubMedGoogle Scholar
  19. Kaderlik KR, Minchin RF, Mulder GJ et al (1994) Metabolic activation pathway for the formation of DNA adducts of the carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in rat extrahepatic tissues. Carcinogenesis 15(8):1703–1709CrossRefPubMedGoogle Scholar
  20. Kanemoto K, Fukuta K, Kawai N et al (2016) Genomic landscape of experimental bladder cancer in rodents and its application to human bladder cancer: gene amplification and potential overexpression of Cyp2a5/CYP2A6 are associated with the invasive phenotype. PLoS One 11(11):e0167374.  https://doi.org/10.1371/journal.pone.0167374 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lin J, Forman MR, Wang J et al (2012) Intake of red meat and heterocyclic amines, metabolic pathway genes and bladder cancer risk. Int J Cancer 131(8):1892–1903.  https://doi.org/10.1002/ijc.27437 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lumbreras B, Garte S, Overvad K et al (2008) Meat intake and bladder cancer in a prospective study: a role for heterocyclic aromatic amines? Cancer Causes Control 19(6):649–656.  https://doi.org/10.1007/s10552-008-9121-1 CrossRefPubMedGoogle Scholar
  23. Maenpaa J, Sigusch H, Raunio H et al (1993) Differential inhibition of coumarin 7-hydroxylase activity in mouse and human liver microsomes. Biochem Pharmacol 45(5):1035–1042.  https://doi.org/10.1007/BF03190960 CrossRefPubMedGoogle Scholar
  24. Michaud DS, Holick CN, Giovannucci E, Stampfer MJ (2006) Meat intake and bladder cancer risk in 2 prospective cohort studies. Am J Clin Nutr 84(5):1177–1183.  https://doi.org/10.1093/ajcn/84.5.1177 CrossRefPubMedGoogle Scholar
  25. Nakajima M, Itoh M, Sakai H et al (2006) CYP2A13 expressed in human bladder metabolically activates 4-aminobiphenyl. Int J Cancer 119(11):2520–2526.  https://doi.org/10.1002/ijc.22136 CrossRefPubMedGoogle Scholar
  26. Nauwelaers G, Bessette EE, Gu D et al (2011) DNA adduct formation of 4-aminobiphenyl and heterocyclic aromatic amines in human hepatocytes. Chem Res Toxicol 24(6):913–925.  https://doi.org/10.1021/tx200091y CrossRefPubMedPubMedCentralGoogle Scholar
  27. O’Toole CM, Povey S, Hepburn P, Franks LM (1983) Identity of some human bladder cancer cell lines. Nature 301(5899):429–430CrossRefPubMedGoogle Scholar
  28. Pathak KV, Chiu TL, Amin EA, Turesky RJ (2016) Methemoglobin formation and characterization of hemoglobin adducts of carcinogenic aromatic amines and heterocyclic aromatic amines. Chem Res Toxicol 29(3):255–269.  https://doi.org/10.1021/acs.chemrestox.5b00418 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pelkonen O, Rautio A, Raunio H, Pasanen M (2000) CYP2A6: a human coumarin 7-hydroxylase. Toxicology 144(1–3):139–147CrossRefPubMedGoogle Scholar
  30. Peluso M, Castegnaro M, Malaveille C et al (1991) 32P Postlabelling analysis of urinary mutagens from smokers of black tobacco implicates 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) as a major DNA-damaging agent. Carcinogenesis 12(4):713–717CrossRefPubMedGoogle Scholar
  31. Peters U, DeMarini DM, Sinha R et al (2003) Urinary mutagenicity and colorectal adenoma risk. Cancer Epidemiol Biomark Prev 12(11 Pt 1):1253–1256Google Scholar
  32. Plottner S, Bastian LA, Kafferlein HU, Bruning T (2016) Effects of benzo[a]pyrene, aromatic amines, and a combination of both on CYP1A1 activities in RT-4 human bladder papilloma cells. J Toxicol Environ Health A 79(22–23):1106–1117.  https://doi.org/10.1080/15287394.2016.1219598 CrossRefPubMedGoogle Scholar
  33. Poirier MC, Beland FA (1997) Aromatic amine DNA adduct formation in chronically-exposed mice: considerations for human comparison. Mutat Res 376(1–2):177–184CrossRefPubMedGoogle Scholar
  34. Radomski JL, Brill E (1970) Bladder cancer induction by aromatic amines: role of N-hydroxy metabolites. Science 167(3920):992–993CrossRefPubMedGoogle Scholar
  35. Raza H, King RS, Squires RB et al (1996) Metabolism of 2-amino-alpha-carboline. A food-borne heterocyclic amine mutagen and carcinogen by human and rodent liver microsomes and by human cytochrome P4501A2. Drug Metab Dispos 24(4):395–400PubMedGoogle Scholar
  36. Reshetnikova G, Sidorenko VS, Whyard T et al (2016) Genotoxic and cytotoxic effects of the environmental pollutant 3-nitrobenzanthrone on bladder cancer cells. Exp Cell Res 349(1):101–108.  https://doi.org/10.1016/j.yexcr.2016.10.003 CrossRefPubMedGoogle Scholar
  37. Riedel K, Scherer G, Engl J, Hagedorn HW, Tricker AR (2006) Determination of three carcinogenic aromatic amines in urine of smokers and nonsmokers. J Anal Toxicol 30(3):187–195CrossRefPubMedGoogle Scholar
  38. Shimada T, Kim D, Murayama N et al (2013) Binding of diverse environmental chemicals with human cytochromes P450 2A13, 2A6, and 1B1 and enzyme inhibition. Chem Res Toxicol 26(4):517–528.  https://doi.org/10.1021/tx300492j CrossRefPubMedPubMedCentralGoogle Scholar
  39. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics. CA Cancer J Clin 67(1):7–30.  https://doi.org/10.3322/caac.21387 CrossRefGoogle Scholar
  40. Smith CJ, McKarns SC, Davis RA et al (1996) Human urine mutagenicity study comparing cigarettes which burn or primarily heat tobacco. Mutat Res 361(1):1–9CrossRefPubMedGoogle Scholar
  41. Su T, Bao Z, Zhang QY, Smith TJ, Hong JY, Ding X (2000) Human cytochrome P450 CYP2A13: predominant expression in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res 60(18):5074–5079PubMedGoogle Scholar
  42. Sugimura T, Wakabayashi K, Nakagama H, Nagao M (2004) Heterocyclic amines: mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci 95(4):290–299CrossRefPubMedGoogle Scholar
  43. Tang Y, LeMaster DM, Nauwelaers G, Gu D, Langouet S, Turesky RJ (2012) UDP-glucuronosyltransferase-mediated metabolic activation of the tobacco carcinogen 2-amino-9H-pyrido[2,3-b]indole. J Biol Chem 287(18):14960–14972.  https://doi.org/10.1074/jbc.M111.320093 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tassaneeyakul W, Birkett DJ, Veronese ME et al (1993) Specificity of substrate and inhibitor probes for human cytochromes P450 1A1 and 1A2. J Pharmacol Exp Ther 265(1):401–407PubMedGoogle Scholar
  45. Turesky RJ, Le Marchand L (2011) Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: lessons learned from aromatic amines. Chem Res Toxicol 24(8):1169–1214.  https://doi.org/10.1021/tx200135s CrossRefPubMedPubMedCentralGoogle Scholar
  46. Turesky RJ, Yuan JM, Wang R, Peterson S, Yu MC (2007) Tobacco smoking and urinary levels of 2-amino-9H-pyrido[2,3-b]indole in men of Shanghai, China. Cancer Epidemiol Biomark Prev 16(8):1554–1560.  https://doi.org/10.1158/1055-9965.EPI-07-0132 CrossRefGoogle Scholar
  47. Turesky RJ, Konorev D, Fan X et al (2015) Effect of cytochrome P450 reductase deficiency on 2-amino-9H-pyrido[2,3-b]indole metabolism and DNA adduct formation in liver and extrahepatic tissues of mice. Chem Res Toxicol 28(12):2400–2410.  https://doi.org/10.1021/acs.chemrestox.5b00405 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Von Weymarn LB, Murphy SE (2003) CYP2A13-catalysed coumarin metabolism: comparison with CYP2A5 and CYP2A6. Xenobiotica 33(1):73–81.  https://doi.org/10.1080/0049825021000022302 CrossRefGoogle Scholar
  49. Yun CH, Shimada T, Guengerich FP (1991) Purification and characterization of human liver microsomal cytochrome P-450 2A6. Mol Pharmacol 40(5):679–685PubMedGoogle Scholar
  50. Zayas B, Stillwell SW, Wishnok JS et al (2007) Detection and quantification of 4-ABP adducts in DNA from bladder cancer patients. Carcinogenesis 28(2):342–349.  https://doi.org/10.1093/carcin/bgl142 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research BuildingUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Pharmacological SciencesStony Brook UniversityStony BrookUSA
  3. 3.Department of ChemistryStony Brook UniversityStony BrookUSA
  4. 4.Department of Biochemistry, Molecular Biology and Biophysics and Masonic Cancer CenterUniversity of MinnesotaMinneapolisUSA

Personalised recommendations