Skip to main content

Advertisement

Log in

Proteomic analysis of hippocampal proteins in acrylamide-exposed Wistar rats

  • Organ Toxicity and Mechnisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Acrylamide has been used industrially and also found in certain foods cooked at high temperatures. Previous reports described acrylamide-related human intoxication who presented with ataxia, memory impairment, and/or illusion. The aim of this study was to characterize the molecular mechanisms of neurotoxicity of acrylamide by analyzing the expression levels of various proteins in the hippocampus of rats exposed to acrylamide. Male Wistar rats were administered acrylamide by gavage at 0, 2, and 20 mg/kg for 1 week or 0, 0.2, 2, and 20 mg/kg for 5 weeks. At the end of the experiment, the hippocampus was dissected out and proteins were extracted for two-dimensional difference gel electrophoresis combined with matrix-assisted laser-desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF/MS). MALDI-TOF/TOF/MS identified significant changes in two proteins in the 1-week and 22 proteins in the 5-week exposure groups. These changes were up-regulation in 9 and down-regulation in 13 proteins in the hippocampus of rats exposed to acrylamide at 20 mg/kg for 5 weeks. PANTHER overrepresentation test based on the GO of biological process showed significant overrepresentation in proteins annotated to nicotinamide nucleotide metabolic process, coenzyme biosynthetic process, pyruvate metabolic process, and carbohydrate metabolic process. The test also showed significant overrepresentation in proteins annotated to creatinine kinase activity for the GO of molecular function as well as myelin sheath, cytoplasmic part, and cell body for the GO of cellular component. Comparison with a previous proteomic study on hippocampal proteins in rats exposed to 1-bromopropane identified triosephosphate isomerase, mitochondrial creatine kinase U-type, creatine kinase β-type and proteasome subunit α type-1 as proteins affected by exposure to acrylamide and 1-bromopropane, suggesting a common mechanism of neurotoxicity for soft electrophiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bae SY, Sheverdin V, Maeng J, Lyoo IK, Han PL, Lee K (2017) Immunohistochemical localization of translationally controlled tumor protein in axon terminals of mouse hippocampal neurons. Exp Neurobiol 26:82–89

    Article  Google Scholar 

  • Bingol B, Schuman EM (2006) Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441:1144–1148

    Article  CAS  Google Scholar 

  • Blennow K, Zetterberg H (2018) Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med 284:643–663

    Article  CAS  Google Scholar 

  • Burek JD, Albee RR, Beyer JE, Bell TJ, Carreon RM, Morden DC et al (1980) Subchronic toxicity of acrylamide administered to rats in the drinking water followed by up to 144 days of recovery. J Environ Pathol Toxicol 4:157–182

    CAS  PubMed  Google Scholar 

  • Burklen TS, Schlattner U, Homayouni R, Gough K, Rak M, Szeghalmi A et al (2006) The creatine kinase/creatine connection to alzheimer’s disease: Ck-inactivation, app-ck complexes and focal creatine deposits. J Biomed Biotechnol 2006:35936

    Article  Google Scholar 

  • Cai F, Frey JU, Sanna PP, Behnisch T (2010) Protein degradation by the proteasome is required for synaptic tagging and the heterosynaptic stabilization of hippocampal late-phase long-term potentiation. Neuroscience 169:1520–1526

    Article  CAS  Google Scholar 

  • Calleman CJ, Wu Y, He F, Tian G, Bergmark E, Zhang S et al (1994) Relationships between biomarkers of exposure and neurological effects in a group of workers exposed to acrylamide. Toxicol Appl Pharmacol 126:361–371

    Article  CAS  Google Scholar 

  • Casaletto KB, Elahi FM, Bettcher BM, Neuhaus J, Bendlin BB, Asthana S et al (2017) Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers. Neurology 89:1782–1788

    Article  CAS  Google Scholar 

  • Chang J, Oikawa S, Iwahashi H, Kitagawa E, Takeuchi I, Yuda M et al (2014) Expression of proteins associated with adipocyte lipolysis was significantly changed in the adipose tissues of the obese spontaneously hypertensive/ndmcr-cp rat. Diabetol Metab Syndr 6:8

    Article  Google Scholar 

  • Djakovic SN, Schwarz LA, Barylko B, DeMartino GN, Patrick GN (2009) Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase ii. J Biol Chem 284:26655–26665

    Article  CAS  Google Scholar 

  • Dong C, Upadhya SC, Ding L, Smith TK, Hegde AN (2008) Proteasome inhibition enhances the induction and impairs the maintenance of late-phase long-term potentiation. Learn Mem 15:335–347

    Article  CAS  Google Scholar 

  • Dybing E, Farmer PB, Andersen M, Fennell TR, Lalljie SP, Muller DJ et al (2005) Human exposure and internal dose assessments of acrylamide in food. Food Chem Toxicol 43:365–410

    Article  CAS  Google Scholar 

  • Ehlers MD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6:231–242

    Article  CAS  Google Scholar 

  • Fennell TR, Friedman MA (2005) Comparison of acrylamide metabolism in humans and rodents. Adv Exp Med Biol 561:109–116

    Article  CAS  Google Scholar 

  • Fennell TR, Sumner SC, Snyder RW, Burgess J, Spicer R, Bridson WE et al (2005) Metabolism and hemoglobin adduct formation of acrylamide in humans. Toxicol Sci 85:447–459

    Article  CAS  Google Scholar 

  • Fennell TR, Sumner SC, Snyder RW, Burgess J, Friedman MA (2006) Kinetics of elimination of urinary metabolites of acrylamide in humans. Toxicol Sci 93:256–267

    Article  CAS  Google Scholar 

  • Ghanayem BI, McDaniel LP, Churchwell MI, Twaddle NC, Snyder R, Fennell TR et al (2005) Role of cyp2e1 in the epoxidation of acrylamide to glycidamide and formation of DNA and hemoglobin adducts. Toxicol Sci 88:311–318

    Article  CAS  Google Scholar 

  • Hopkins A (1970) The effect of acrylamide on the peripheral nervous system of the baboon. J Neurol Neurosurg Psychiatry 33:805–816

    Article  CAS  Google Scholar 

  • Huang Z, Ichihara S, Oikawa S, Chang J, Zhang L, Takahashi M et al (2011) Proteomic analysis of hippocampal proteins of f344 rats exposed to 1-bromopropane. Toxicol Appl Pharmacol 257:93–101

    Article  CAS  Google Scholar 

  • Huang Z, Ichihara S, Oikawa S, Chang J, Zhang L, Subramanian K et al (2012) Proteomic identification of carbonylated proteins in f344 rat hippocampus after 1-bromopropane exposure. Toxicol Appl Pharmacol 263:44–52

    Article  CAS  Google Scholar 

  • Ichihara G, Kitoh J, Yu X, Asaeda N, Iwai H, Kumazawa T et al (2000) 1-bromopropane, an alternative to ozone layer depleting solvents, is dose-dependently neurotoxic to rats in long-term inhalation exposure. Toxicol Sci 55:116–123

    Article  CAS  Google Scholar 

  • Ichihara G, Miller J, Ziolkowska A, Itohara S, Takeuchi Y (2002) Neurological disorders in three workers exposed to 1-bromopropane. J Occup Health 44:1–7

    Article  Google Scholar 

  • Igisu H, Goto I, Kawamura Y, Kato M, Izumi K (1975) Acrylamide encephaloneuropathy due to well water pollution. J Neurol Neurosurg Psychiatry 38:581–584

    Article  CAS  Google Scholar 

  • Karpova A, Mikhaylova M, Thomas U, Knopfel T, Behnisch T (2006) Involvement of protein synthesis and degradation in long-term potentiation of schaffer collateral ca1 synapses. J Neurosci 26:4949–4955

    Article  CAS  Google Scholar 

  • Kesson CM, Baird AW, Lawson DH (1977) Acrylamide poisoning. Postgrad Med J 53:16–17

    Article  CAS  Google Scholar 

  • Kim Y, Cha SJ, Choi HJ, Kim K (2017) Omega class glutathione s-transferase: antioxidant enzyme in pathogenesis of neurodegenerative diseases. Oxid Med Cell Longev 2017:5049532

    PubMed  PubMed Central  Google Scholar 

  • Kohriyama K, Matsuoka M, Igisu H (1994) Effects of acrylamide and acrylic acid on creatine kinase activity in the rat brain. Arch Toxicol 68:67–70

    Article  CAS  Google Scholar 

  • Lin D, Saleh S, Liebler DC (2008) Reversibility of covalent electrophile-protein adducts and chemical toxicity. Chem Res Toxicol 21:2361–2369

    Article  CAS  Google Scholar 

  • Liu Z, Song G, Zou C, Liu G, Wu W, Yuan T et al (2015) Acrylamide induces mitochondrial dysfunction and apoptosis in bv-2 microglial cells. Free Radic Biol Med 84:42–53

    Article  Google Scholar 

  • LoPachin RM, Gavin T (2012) Molecular mechanism of acrylamide neurotoxicity: lessons learned from organic chemistry. Environ Health Perspect 120:1650–1657

    Article  CAS  Google Scholar 

  • Lu ZR, Zou HC, Park SJ, Park D, Shi L, Oh SH et al (2009) The effects of acrylamide on brain creatine kinase: inhibition kinetics and computational docking simulation. Int J Biol Macromol 44:128–132

    Article  Google Scholar 

  • Majersik JJ, Caravati EM, Steffens JD (2007) Severe neurotoxicity associated with exposure to the solvent 1-bromopropane (n-propyl bromide). Clin Toxicol (Phila) 45:270–276

    Article  CAS  Google Scholar 

  • Martinez de Arrieta C, Morte B, Coloma A, Bernal J (1999) The human rc3 gene homolog, nrgn contains a thyroid hormone-responsive element located in the first intron. Endocrinology 140:335–343

    Article  CAS  Google Scholar 

  • Matsuoka M, Igisu H, Lin J, Inoue N (1990) Effects of acrylamide and n,n’-methylene-bis-acrylamide on creatine kinase activity. Brain Res 507:351–353

    Article  CAS  Google Scholar 

  • Matsuoka M, Matsumura H, Igisu H (1996) Creatine kinase activities in brain and blood: possible neurotoxic indicator of acrylamide intoxication. Occup Environ Med 53:468–471

    Article  CAS  Google Scholar 

  • Meyer LE, Machado LB, Santiago AP, da-Silva WS, De Felice FG, Holub O et al (2006) Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent adp re-cycling activity. J Biol Chem 281:37361–37371

    Article  CAS  Google Scholar 

  • Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the panther classification system. Nat Protoc 8:1551–1566

    Article  Google Scholar 

  • Mohideen SS, Ichihara S, Banu S, Liu F, Kitoh J, Ichihara G (2009) Changes in neurotransmitter receptor expression levels in rat brain after 4-week exposure to 1-bromopropane. Neurotoxicology 30:1078–1083

    Article  CAS  Google Scholar 

  • Mohideen SS, Ichihara S, Subramanian K, Huang Z, Naito H, Kitoh J et al (2013) Effects of exposure to 1-bromopropane on astrocytes and oligodendrocytes in rat brain. J Occup Health 55:29–38

    Article  CAS  Google Scholar 

  • Morimoto M (1975) Occurence of human cases intoxicated with well water contaminated with acrylamide in fukuoka prefecture. Water Waste 17:51–62

    Google Scholar 

  • Morita K, Zhang L, Hara S, Ichinose H, Sakai M, Wakayama Y, et al (2017) Exposure to acrylamide reduces noradernaline level, noradrenergic axons, and adult neurogenesis in brain of rats similarly to exposure to 1-bromopropane. Toxicologist Suppl Toxicol Sci 178

  • Oikawa S, Yamada T, Minohata T, Kobayashi H, Furukawa A, Tada-Oikawa S et al (2009) Proteomic identification of carbonylated proteins in the monkey hippocampus after ischemia-reperfusion. Free Radic Biol Med 46:1472–1477

    Article  CAS  Google Scholar 

  • Pennisi M, Malaguarnera G, Puglisi V, Vinciguerra L, Vacante M, Malaguarnera M (2013) Neurotoxicity of acrylamide in exposed workers. Int J Environ Res Public Health 10:3843–3854

    Article  Google Scholar 

  • Portelius E, Olsson B, Hoglund K, Cullen NC, Kvartsberg H, Andreasson U et al (2018) Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology. Acta Neuropathol 136:363–376

    Article  CAS  Google Scholar 

  • Prineas J (1969) The pathogenesis of dying-back polyneuropathies. Ii. An ultrastructural study of experimental acrylamide intoxication in the cat. J Neuropathol Exp Neurol 28:598–621

    Article  CAS  Google Scholar 

  • Rinetti GV, Schweizer FE (2010) Ubiquitination acutely regulates presynaptic neurotransmitter release in mammalian neurons. J Neurosci 30:3157–3166

    Article  CAS  Google Scholar 

  • Samukawa M, Ichihara G, Oka N, Kusunoki S (2012) A case of severe neurotoxicity associated with exposure to 1-bromopropane, an alternative to ozone-depleting or global-warming solvents. Arch Intern Med 172:1257–1260

    Article  Google Scholar 

  • Schlattner U, Tokarska-Schlattner M, Wallimann T (2006) Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 1762:164–180

    Article  CAS  Google Scholar 

  • Sumner SC, MacNeela JP, Fennell TR (1992) Characterization and quantitation of urinary metabolites of [1,2,3-13c]acrylamide in rats and mice using 13c nuclear magnetic resonance spectroscopy. Chem Res Toxicol 5:81–89

    Article  CAS  Google Scholar 

  • Sumner SC, Fennell TR, Moore TA, Chanas B, Gonzalez F, Ghanayem BI (1999) Role of cytochrome p450 2e1 in the metabolism of acrylamide and acrylonitrile in mice. Chem Res Toxicol 12:1110–1116

    Article  CAS  Google Scholar 

  • Sumner SC, Williams CC, Snyder RW, Krol WL, Asgharian B, Fennell TR (2003) Acrylamide: a comparison of metabolism and hemoglobin adducts in rodents following dermal, intraperitoneal, oral, or inhalation exposure. Toxicol Sci 75:260–270

    Article  CAS  Google Scholar 

  • Tajes M, Eraso-Pichot A, Rubio-Moscardo F, Guivernau B, Ramos-Fernandez E, Bosch-Morato M et al (2014) Methylglyoxal produced by amyloid-beta peptide-induced nitrotyrosination of triosephosphate isomerase triggers neuronal death in Alzheimer’s disease. J Alzheimers Dis 41:273–288

    Article  CAS  Google Scholar 

  • Takeuchi Y, Ono Y, Hisanaga N, Kitoh J, Sugiura Y (1980) A comparative study on the neurotoxicity of n-pentane, n-hexane, and n-heptane in the rat. Br J Ind Med 37:241–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • The Joint FAO/WHO Expert Committee on Food Additives (JECFA) (2011) Safety evaluation of certain contaminants in food. in WHO FOOD ADDITIVES SERIES: 63 FAO JECFA MONOGRAPHS 8, World Health Organization, Geneva, Food and Agriculture Organization of the United Nations, Rome, p 791

  • Tyl RW, Marr MC, Myers CB, Ross WP, Friedman MA (2000) Relationship between acrylamide reproductive and neurotoxicity in male rats. Reprod Toxicol 14:147–157

    Article  CAS  Google Scholar 

  • Wang H, Ichihara G, Ito H, Kato K, Kitoh J, Yamada T et al (2002) Biochemical changes in the central nervous system of rats exposed to 1-bromopropane for 7 days. Toxicol Sci 67:114–120

    Article  CAS  Google Scholar 

  • Wang H, Ichihara G, Ito H, Kato K, Kitoh J, Yamada T et al (2003a) Dose-dependent biochemical changes in rat central nervous system after 12-week exposure to 1-bromopropane. Neurotoxicology 24:199–206

    Article  CAS  Google Scholar 

  • Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH et al (2003b) Regulation of cell polarity and protrusion formation by targeting rhoa for degradation. Science 302:1775–1779

    Article  CAS  Google Scholar 

  • Wang X, Dong C, Sun L, Zhu L, Sun C, Ma R et al (2016) Quantitative proteomic analysis of age-related subventricular zone proteins associated with neurodegenerative disease. Sci Rep 6:37443

    Article  CAS  Google Scholar 

  • Wible RS, Sutter TR (2017) Soft cysteine signaling network: the functional significance of cysteine in protein function and the soft acids/bases thiol chemistry that facilitates cysteine modification. Chem Res Toxicol 30:729–762

    Article  CAS  Google Scholar 

  • Wispriyono B, Matsuoka M, Igisu H (2004) Acrylamide does not cause apparent changes in genetic expression of creatine kinase in rat cerebellum. J UOEH 26:51–57

    Article  CAS  Google Scholar 

  • Zeiger E, Recio L, Fennell TR, Haseman JK, Snyder RW, Friedman M (2009) Investigation of the low-dose response in the in vivo induction of micronuclei and adducts by acrylamide. Toxicol Sci 107:247–257

    Article  CAS  Google Scholar 

  • Zhang SF, Hennessey T, Yang L, Starkova NN, Beal MF, Starkov AA (2011) Impaired brain creatine kinase activity in huntington’s disease. Neurodegener Dis 8:194–201

    Article  CAS  Google Scholar 

  • Zong C, Garner CE, Huang C, Zhang X, Zhang L, Chang J et al (2016) Preliminary characterization of a murine model for 1-bromopropane neurotoxicity: role of cytochrome p450. Toxicol Lett 258:249–258

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science 26293148, 16H02965, 17H06396, and 17H07105. The authors thank Ms. Yoshiko Murakata for the generous help in proteomic analysis, Dr. Xiao Zhang for help in molecular analysis, and Ms. Yurina Wakayama, Mr. Kyo Morita, Ms. Hana Katano, and Ms. Mami Sakai for their generous help in the experiment. We thank Ms. Satoko Arai for the excellent secretarial support. We also acknowledge the help and support of Dr. Toshio Nakadate throughout the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaku Ichihara.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

204_2019_2484_MOESM1_ESM.pptx

Supplementary Fig. 1 Changes in body weight of rats exposed by gavage to acrylamide at 0, 2, 20 mg/kg bw for 1 week or 0, 0.2, 2, 20 mg/kg bw for 5 weeks. Daily exposure to acrylamide at 20mg/kg bw was associated with a significant body weight loss from Day 30. The value is the mean ± SD (n=5 rats in each group), *p < 0.05, compared with the control by one-way ANOVA followed by Dunnett’s test. Supplementary Fig. 2 a, b, c, d) Changes in weight of different body organs during the 1-week study period. Numbers on the abscissa represent the dose of acrylamide (0 mg/kg, control group; 2 mg/kg group; 20 mg/kg group. n=6 in each group). e, f, g, h, I, j) Changes in weight of different body organs during the 5-week study period. Numbers on the abscissa represent the dose of acrylamide (0 mg/kg, control group, n =5; 0.2 mg/kg group, n=3; 2 mg/kg group, n=5; 20 mg/kg group, n=5). The weight of the brain, adrenal gland, liver, kidney and spleen at day 35 was significantly lower in the 20 mg/kg acrylamide group compared with the control. Data are mean ± SD, *p<0.05, compared with the control, by one-way ANOVA followed by Dunnett’s test (PPTX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagashima, D., Zhang, L., Kitamura, Y. et al. Proteomic analysis of hippocampal proteins in acrylamide-exposed Wistar rats. Arch Toxicol 93, 1993–2006 (2019). https://doi.org/10.1007/s00204-019-02484-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02484-9

Keywords

Navigation