Skip to main content
Log in

The role of roughage provision on the absorption and disposition of the mycotoxin deoxynivalenol and its acetylated derivatives in calves: from field observations to toxicokinetics

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

A clinical case in Belgium demonstrated that feeding a feed concentrate containing considerable levels of deoxynivalenol (DON, 1.13 mg/kg feed) induced severe liver failure in 2- to 3-month-old beef calves. Symptoms disappeared by replacing the highly contaminated corn and by stimulating ruminal development via roughage administration. A multi-mycotoxin contamination was demonstrated in feed samples collected at 15 different veal farms in Belgium. DON was most prevalent, contaminating 80% of the roughage samples (mixed straw and maize silage; average concentration in positives: 637 ± 621 µg/kg, max. 1818 µg/kg), and all feed concentrate samples (411 ± 156 µg/kg, max. 693 µg/kg). In order to evaluate the impact of roughage provision and its associated ruminal development on the gastro-intestinal absorption and biodegradation of DON and its acetylated derivatives (3- and 15-ADON) in calves, a toxicokinetic study was performed with two ruminating and two non-ruminating male calves. Animals received in succession a bolus of DON (120 µg/kg bodyweight (BW)), 15-ADON (50 µg/kg BW), and 3-ADON (25 µg/kg) by intravenous (IV) injection or per os (PO) in a cross-over design. The absolute oral bioavailability of DON was much higher in non-ruminating calves (50.7 ± 33.0%) compared to ruminating calves (4.1 ± 4.5%). Immediately following exposure, 3- and 15-ADON were hydrolysed to DON in ruminating calves. DON and its acetylated metabolites were mainly metabolized to DON-3-glucuronide, however, also small amounts of DON-15-glucuronide were detected in urine. DON degradation to deepoxy-DON (DOM-1) was only observed to a relevant extent in ruminating calves. Consequently, toxicity of DON in calves is closely related to roughage provision and the associated stage of ruminal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonissen G, Martel A, Pasmans F, Ducatelle R, Verbrugghe E, Vandenbroucke V, Li SJ, Haesebrouck F, Van Immerseel F, Croubels S (2014) The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins 6:430–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonissen G, Van Immerseel F, Pasmans F, Ducatelle R, Janssens GPJ, De Baere S, Mountzouris KC, Su S, Wong EA, De Meulenaer B, Verlinden M, Devreese M, Haesebrouck F, Novak B, Dohnal B, Martel A, Croubels S (2015) The mycotoxins deoxynivalenol and fumonisins alter the extrinsic component of intestinal barrier in broiler chickens. J Agric Food Chem 63:10846–10855

    Article  CAS  PubMed  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berends H, Van den Borne J, Mollenhorst H, Van Reenen C, Bokkers E, Gerrits W (2014) Utilization of roughages and concentrates relative to that of milk replacer increases strongly with age in veal calves. J Dairy Sci 97:6475–6484

    Article  CAS  PubMed  Google Scholar 

  • Berthiller F, Crews C, Dall’Asta C, De Saeger S, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J (2013) Masked mycotoxins: a review. Mol Nutr Food Res 57:165–186

    Article  CAS  PubMed  Google Scholar 

  • Bottalico A (1998) Fusarium diseases of cereals: species complex and related mycotoxin profiles, in Europe. J Plant Pathol 80:85–103

    CAS  Google Scholar 

  • Bouhet S, Oswald IP (2005) The effects of mycotoxins, fungal food contaminants, on the intestinal epithelial cell-derived innate immune response. Vet Immunol Immunop 108:199–209

    Article  CAS  Google Scholar 

  • Bracarense APFL, Lucioli J, Grenier B, Pacheco GD, Moll W-D, Schatzmayr G, Oswald IP (2012) Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. Brit J Nutr 107:1776–1786

    Article  CAS  PubMed  Google Scholar 

  • Broekaert N, Devreese M, De Baere S, De Backer P, Croubels S (2015a) Modified Fusarium mycotoxins unmasked: From occurrence in cereals to animal and human excretion. Food Chem Toxicol 80:17–31

    Article  CAS  PubMed  Google Scholar 

  • Broekaert N, Devreese M, De Mil T, Fraeyman S, Antonissen G, De Baere S, De Backer P, Vermeulen A, Croubels S (2015b) Oral bioavailability, hydrolysis, and comparative toxicokinetics of 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol in broiler chickens and pigs. J Agric Food Chem 63:8734–8742

    Article  CAS  PubMed  Google Scholar 

  • Broekaert N, Devreese M, van Bergen T, Schauvliege S, De Boevre M, De Saeger S, Vanhaecke L, Berthiller F, Michlmayr H, Malachová A, Adam G, Vermeulen A, Croubels S (2017) In vivo contribution of deoxynivalenol-3-β-d-glucoside to deoxynivalenol exposure in broiler chickens and pigs: oral bioavailability, hydrolysis and toxicokinetics. Arch Toxicol 91:699–712

    Article  CAS  PubMed  Google Scholar 

  • Casteel S, Rottinghaus G, Johnson G, Wicklow D (1995) Liver disease in cattle induced by consumption of moldy hay. Vet Hum Toxicol 37:248–250

    CAS  PubMed  Google Scholar 

  • Craig AM, Pearson EG, Meyer C, Schmitz JA (1991) Serum liver-enzyme and histopathologic changes in calves with chronic and chronic-delayed Senecio jacobaea toxicosis. Am J Vet Res 52:1969–1978

    CAS  PubMed  Google Scholar 

  • Dänicke S, Matthäus K, Lebzien P, Valenta H, Stemme K, Ueberschär K-H, Razzazi-Fazeli E, Böhm J, Flachowsky G (2005) Effects of Fusarium toxin-contaminated wheat grain on nutrient turnover, microbial protein synthesis and metabolism of deoxynivalenol and zearalenone in the rumen of dairy cows. J Anim Physiol Anim Nutr 89:303–315

    Article  CAS  Google Scholar 

  • De Boevre M, Di Mavungu JD, Landschoot S, Audenaert K, Eeckhout M, Maene P, Haesaert G, De Saeger S (2012) Natural occurrence of mycotoxins and their masked forms in food and feed products. World Mycotoxin J 5:207–219

    Article  CAS  Google Scholar 

  • Devreese M, Antonissen G, Broekaert N, De Mil T, De Baere S, Vanhaecke L, De Backer P, Croubels S (2015) Toxicokinetic study and oral bioavailability of DON in turkey poults, and comparative biotransformation between broilers and turkeys. World Mycotoxin J 8:533–539

    Article  CAS  Google Scholar 

  • Driehuis F, Spanjer MC, Scholten JM, Te Giffel MC (2008) Occurrence of mycotoxins in maize, grass and wheat silage for dairy cattle in the Netherlands. Food Addit Contam B 1:41–50

    Article  CAS  Google Scholar 

  • Eriksen GS, Pettersson H (2004) Toxicological evaluation of trichothecenes in animal feed. Anim Feed Sci Technol 114:205–239

    Article  CAS  Google Scholar 

  • Eriksen GS, Pettersson H, Lindberg JE (2003) Absorption, metabolism and excretion of 3-acetyl DON in pigs. Arch Tierernahr 57:335–345

    CAS  PubMed  Google Scholar 

  • European Commission (1997) 97/2/EC of 20 January 1997 amending Directive 91/629/EEC laying down minimum standards for the protection of calves. Off J Eur Commun L 025:24–25

    Google Scholar 

  • European Commission (2002) 2002/657/EC implementing council directive 96/23/EC concerning the performances of analytical methods and the interpretation of results. Off J Eur Commun L 221:8–36

    Google Scholar 

  • European Commission (2006) 2006/576/EC commission recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off J Eur Union L229:7–9

    Google Scholar 

  • Fink-Gremmels J (2008) Mycotoxins in cattle feeds and carry-over to dairy milk: a review. Food Addit Contam 25:172–180

    Article  CAS  Google Scholar 

  • Fruhmann P, Warth B, Hametner C, Berthiller F, Horkel E, Adam G, Sulyok M, Krska R, Fröhlich J (2012) Synthesis of deoxynivalenol-3-beta-d-O-glucuronide for its use as biomarker for dietary deoxynivalenol exposure. World Mycotoxin J 5:127–132

    Article  CAS  Google Scholar 

  • Fruhmann P, Skrinjar P, Weber J, Mikula H, Warth B, Sulyok M, Krska R, Adam G, Rosenberg E, Hametner C, Fröhlich J (2014) Sulfation of deoxynivalenol, its acetylated derivatives, and T2-toxin. Tetrahedron 70:5260–5266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs E, Binder E, Heidler D, Krska R (2002) Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Addit Contam 19:379–386

    Article  CAS  PubMed  Google Scholar 

  • Gallo A, Giuberti G, Frisvad JC, Bertuzzi T, Nielsen KF (2015) Review on mycotoxin issues in ruminants: occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins 7:3057–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasthuys E, Vandecasteele T, De Bruyne P, Vande Walle J, De Backer P, Cornillie P, Devreese M, Croubels S (2016) The potential use of piglets as human pediatric surrogate for preclinical pharmacokinetic and pharmacodynamic drug testing. Curr Pharm Des 22:4069–4085

    Article  CAS  PubMed  Google Scholar 

  • Gerez JR, Pinton P, Callu P, Grosjean F, Oswald IP, Bracarense APFL (2015) Deoxynivalenol alone or in combination with nivalenol and zearalenone induce systemic histological changes in pigs. Exp Toxicol Pathol 67:89–98

    Article  CAS  PubMed  Google Scholar 

  • Goyarts T, Dänicke S (2006) Bioavailability of the Fusarium toxin deoxynivalenol (DON) from naturally contaminated wheat for the pig. Toxicol Lett 163:171–182

    Article  CAS  PubMed  Google Scholar 

  • Heitzman RJ (1994) Veterinary Drug Residues, Report Eur. 14126-EN. Commission of the EC, Brussels-Luxembourg

  • Ingalls J (1996) Influence of deoxynivalenol on feed consumption by dairy cows. Anim Feed Sci Technol 60:297–300

    Article  CAS  Google Scholar 

  • Ji F, Wu J, Zhao H, Xu J, Shi J (2015) Relationship of deoxynivalenol content in grain, chaff, and straw with Fusarium head blight severity in wheat varieties with various levels of resistance. Toxins 7:728–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King RR, Mcqueen RE, Levesque D, Greenhalgh R (1984) Transformation of deoxynivalenol (vomitoxin) by rumen microorganisms. J Agric Food Chem 32:1181–1183

    Article  CAS  Google Scholar 

  • Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom L, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot A-C, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy J-M, Gong YY, Meyer K, Naegeli H, Parent-Massin D, Rietjens I, van Egmond H, Altieri A, Eskola M, Gergelova P, Bordajandi LR, Benkova B, Dörr B, Gkrillas A, Gustavsson N, van Manen M, Edler L (2017) Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. https://doi.org/10.2903/j.efsa.2017.4718

    Article  Google Scholar 

  • Königs M, Schwerdt G, Gekle M, Humpf HU (2008) Effects of the mycotoxin deoxynivalenol on human primary hepatocytes. Mol Nutr Food Res 52:830–839

    Article  CAS  PubMed  Google Scholar 

  • Kovalsky P, Kos G, Nährer K, Schwab C, Jenkins T, Schatzmayr G, Sulyok M, Krska R (2016) Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize—an extensive survey. Toxins 8:363

    Article  CAS  PubMed Central  Google Scholar 

  • Leruste H, Brscic M, Cozzi G, Kemp B, Wolthuis-Fillerup M, Lensink BJ, Bokkers EAM, van Reenen CG (2014) Prevalence and potential influencing factors of non-nutritive oral behaviors of veal calves on commercial farms. J Dairy Sci 97:7021–7030

    Article  CAS  PubMed  Google Scholar 

  • Maresca M (2013) From the gut to the brain: journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins 5(4):784–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattiello S, Canali E, Ferrante V, Caniatti M, Gottardo F, Cozzi G, Andrighetto I, Verga M (2002) The provision of solid feeds to veal calves: II. Behavior, physiology, and abomasal damage. J Anim Sci 80:367–375

    Article  CAS  PubMed  Google Scholar 

  • Maul R, Warth B, Kant JS, Schebb NH, Krska R, Koch M, Sulyok M (2012) Investigation of the hepatic glucuronidation pattern of the Fusarium mycotoxin deoxynivalenol in various species. Chem Res Toxicol 25(12):2715–2717

    Article  CAS  PubMed  Google Scholar 

  • Mikami O, Yamamoto S, Yamanaka N, Nakajima Y (2004) Porcine hepatocyte apoptosis and reduction of albumin secretion induced by deoxynivalenol. Toxicology 204:241–249

    Article  CAS  PubMed  Google Scholar 

  • Monbaliu S, Van Poucke C, Detavernier C, Dumoulin F, Van De Velde M, Schoeters E, Van Dyck S, Averkieva O, Van Peteghem C, De Saeger S (2010) Occurrence of mycotoxins in feed as analyzed by a multi-mycotoxin LC–MS/MS method. J Agr Food Chem 58:66–71

    Article  CAS  Google Scholar 

  • Pardon B, Catry B, Boone R, Theys H, De Bleecker K, Dewulf J, Deprez P (2014) Characteristics and challenges of the modern Belgian veal industry. Vlaams Diergen Tijds 83:155–163

    Google Scholar 

  • Payros D, Alassane-Kpembi I, Pierron A, Loiseau N, Pinton P, Oswald IP (2016) Toxicology of deoxynivalenol and its acetylated and modified forms. Arch Toxicol 90:2931–2957

    Article  CAS  PubMed  Google Scholar 

  • Pestka JJ, Smolinski AT (2005) Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health B 8:39–69

    Article  CAS  Google Scholar 

  • Pinton P, Oswald IP (2014) Effect of deoxynivalenol and other type B trichothecenes on the intestine: a review. Toxins 6:1615–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prelusky DB, Veira DM, Trenholm HL (1985) Plasma pharmacokinetics of the mycotoxin deoxynivalenol following oral and intravenous administration to sheep. J Environ Sci Heal B 20:603–624

    Article  CAS  Google Scholar 

  • Prelusky DB, Hartin KE, Trenholm HL, Miller JD (1988) Pharmacokinetic fate of 14C-labeled deoxynivalenol in swine. Fundam Appl Toxicol 10:276–286

    Article  CAS  PubMed  Google Scholar 

  • Ronzoni A, Bayrou C, Evrard L, Touati K, Sartelet A (2013) Hepatocholecystitis due to Salmonella Dublin in a crossbred calf. 1st Farah Day, Liège, Belgium (October 17, 2014)

  • Saint-Cyr MJ, Perrin-Guyomard A, Manceau J, Houée P, Delmas JM, Rolland JG, Laurentie M (2015) Risk assessment of deoxynivalenol by revisiting its bioavailability in pig and rat models to establish which is more suitable. Toxins 7:5167–5181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatzmayr G, Streit E (2013) Global occurrence of mycotoxins in the food and feed chain: facts and figures. World Mycotoxin J 6:213–222

    Article  CAS  Google Scholar 

  • Schwartz-Zimmermann HE, Hametner C, Nagl V, Slavik V, Moll WD, Berthiller F (2014) Deoxynivalenol (DON) sulfonates as major DON metabolites in rats: from identification to biomarker method development, validation and application. Anal Bioanal Chem 406:7911–7924

    Article  CAS  PubMed  Google Scholar 

  • Schwartz-Zimmermann HE, Fruhmann P, Dänicke S, Wiesenberger G, Caha S, Weber J, Berthiller F (2015) Metabolism of deoxynivalenol and deepoxy-deoxynivalenol in broiler chickens, pullets, roosters and turkeys. Toxins 7:4706–4729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz-Zimmermann HE, Hametner C, Nagl V, Fiby I, Macheiner L, Winkler J, Dänicke S, Clark E, Pestka JJ, Berthiller F (2017) Glucuronidation of deoxynivalenol (DON) by different animal species: identification of iso-DON glucuronides and iso-deepoxy-DON glucuronides as novel DON metabolites in pigs, rats, mice, and cows. Arch Toxicol 91:3857–3872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeling K, Dänicke S, Valenta H, van Egmond HP, Schothorst RC, Jekel AA, Lebzien P, Schollenberger M, Razzazi-Fazeli E, Flachowsky G (2006) Effects of Fusarium toxin-contaminated wheat and feed intake level of the biotransformation and carry-over of deoxynivalenol in dairy cows. Food Addit Contam 23:1008–1020

    Article  CAS  PubMed  Google Scholar 

  • Smith BP, Magdesian KG (2009) Alterations in alimentary and hepatic function. In: Smith BP (ed) Large animal internal medicine, 4th edn. Mosby Elsevier, Davis, pp 96–116

    Google Scholar 

  • Smith MC, Madec S, Coton E, Hymery N (2016) Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 8:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson WL, Wannemacher RW (1986) Structure-function-relationships of 12,13-epoxytrichothecene mycotoxins in cell-culture comparison to whole animal lethality. Toxicon 24:985–994

    Article  CAS  PubMed  Google Scholar 

  • Thompson M, Ellison SL, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl Chem 74:835–855

    Article  CAS  Google Scholar 

  • Turner PC, White KL, Burley VJ, Hopton RP, Rajendram A, Fisher J, Cade JE, Wild CP (2010) A comparison of deoxynivalenol intake and urinary deoxynivalenol in UK adults. Biomarkers 15:553–562

    Article  CAS  PubMed  Google Scholar 

  • Van Bost S, Roels S, Mainil J (2001) Necrotoxigenic Escherichia coli type-2 invade and cause diarrhoea during experimental infection in colostrum-restricted newborn calves. Vet Microbiol 8:315–329

    Article  Google Scholar 

  • Van Asselt ED, Azambuja W, Moretti A, Kastelein P, De Rijk TC, Stratakou I, Van Der Fels-Klerx HJ (2012) A Dutch field survey on fungal infection and mycotoxin concentrations in maize. Food Addit Contam Part A 29:1556–1565

    Article  CAS  Google Scholar 

  • Van Limbergen T, Devreese M, Croubels S, Broekaert N, Michiels A, De Saeger S, Maes D (2017) Role of mycotoxins in herds with and without problems with tail necrosis in neonatal pigs. Vet Rec 181:539

    Article  PubMed  Google Scholar 

  • VICH GL 49 (2011) Studies to evaluate the metabolism and residue kinetics of veterinary drugs in food producing animals: validation of analytical methods used in residue depletion studies. http://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM207942.pdf. Accessed 1 Mar 2015

  • Wan D, Huang L, Pan Y, Wu Q, Chen D, Tao Y, Wang X, Liu Z, Li J, Wang L, Yuan Z (2014) Metabolism, distribution, and excretion of deoxynivalenol with combined techniques of radiotracing, high-performance liquid chromatography ion trap time-of-flight mass spectrometry, and online radiometric detection. J Agric Food Chem 62:288–296

    Article  CAS  PubMed  Google Scholar 

  • Warth B, Sulyok M, Fruhmann P, Berthiller F, Schuhmacher R, Hametner C, Adam G, Fröhlich J, Krska R (2012) Assessment of human deoxynivalenol exposure using an LC–MS/MS based biomarker method. Toxicol Lett 211:85–90

    Article  CAS  PubMed  Google Scholar 

  • Webb LE, van Reenen C, Berends H, Engel B, de Boer IJM, Gerrits WJJ, Bokkers EAM (2015) The role of solid feed amount and composition and of milk replacer supply in veal calf welfare. J Dairy Sci 98:5467–5481

    Article  CAS  PubMed  Google Scholar 

  • Winkler J, Kersten S, Valenta H, Hüther L, Meyer U, Engelhardt U, Dänicke S (2014) Simultaneous determination of zearalenone, deoxynivalenol and their metabolites in bovine urine as biomarkers of exposure. World Mycotoxin J 8:63–74

    Article  CAS  Google Scholar 

  • Yoshizawa T, Cote LM, Swanson SP, Buck WB (1986) Confirmation of DOM-1, a de-epoxidation metabolite of deoxynivalenol, in biological-fluids of lactating cows. Agric Biol Chem 50:227–222

    CAS  Google Scholar 

  • Zhang J, Shi H, Wang Y, Li S, Zhang H, Cao Z, Yang K (2018) Effects of limit-feeding diets with different forage-to-concentrate ratios on nutrient intake, rumination, ruminal fermentation, digestibility, blood parameters and growth in Holstein heifers. Anim Sci J 89:527–536

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The technical assistance of J. Muyle, F. Moons, C. Detavernier and E. Heyndrickx was gratefully appreciated. G. Antonissen was supported by a postdoctoral fellowships from Biomin Holding GmbH (Getzersdorf, Austria) and Research Foundation-Flanders (12V6418N). The production of analytical standards of DON-3-GlcA and DON-sulfates was supported by B. Warth and funded by the Vienna Science and Technology Fund (WWTF LS12-021) and the Austrian Science fund (FWF, SFB Fusarium, F3702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunther Antonissen.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the Ethical Committee of the Faculty of Veterinary Medicine and the Faculty of Bioscience Engineering of Ghent University (EC2014/93).

Additional information

Alfons Callebaut: Deceased.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valgaeren, B., Théron, L., Croubels, S. et al. The role of roughage provision on the absorption and disposition of the mycotoxin deoxynivalenol and its acetylated derivatives in calves: from field observations to toxicokinetics. Arch Toxicol 93, 293–310 (2019). https://doi.org/10.1007/s00204-018-2368-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-018-2368-8

Keywords

Navigation