Advertisement

Archives of Toxicology

, Volume 92, Issue 6, pp 1913–1923 | Cite as

Lon in maintaining mitochondrial and endoplasmic reticulum homeostasis

  • Jieyeqi Yang
  • Wenying Chen
  • Boyang Zhang
  • Fengli Tian
  • Zheng Zhou
  • Xin Liao
  • Chen Li
  • Yi Zhang
  • Yanyan Han
  • Yan Wang
  • Yuzhe Li
  • Guo-Qing Wang
  • Xiao Li Shen
Review Article

Abstract

As a vital member of AAA+ (ATPase associated with diverse cellular activities) protein superfamily, Lon, a homo-hexameric ring-shaped protein complex with a serine–lysine catalytic dyad, is highly conserved throughout almost all prokaryotic and eukaryotic organisms. Lon protease (LONP) plays an important role in maintaining mitoproteostasis through selectively recognizing and degrading oxidatively modified mitoproteins within mitochondrial matrix, such as oxidized aconitase, phosphorylated mitochondrial transcription factor A, etc. Furthermore, the up-regulated LONP increased mitochondrial ROS generation to promote cell survival, cell proliferation, epithelial–mesenchymal transition, and cell migration, which was attributed to the up-regulation of NADH:ubiquinone oxidoreductase core subunit S8 via interaction with chaperone Lon under hypoxic or oxidative stress in tumorigenesis. In addition, Lon also participated in protein kinase RNA (PKR)-like endoplasmic reticulum kinase signaling pathway under endoplasmic reticulum (ER) stress. In short, Lon, as a pivotal stress-responsive protein that involved in the crosstalks among mitochondria, ER and nucleus, participated in multifarious important cellular processes crucial for cell survival, such as the mitochondrial protein quality control system, the mitochondrial unfolded protein response, the mtDNA maintenance, and the ER unfolded protein response.

Keywords

Lon Mitochondrial protein quality control Mitochondrial unfolded protein response mtDNA maintenance Endoplasmic reticulum unfolded protein response Chaperone 

Notes

Acknowledgements

This work was supported by the District Program of National Natural Science Foundation of China (31460426), the Youth Program of National Natural Science Foundation of China (31601577), the Excellent Youth Talents of Zunyi Medical University (17zy-006), the cooperation projects of the Science and Technology Department of Guizhou Province (LH[2014]7546), the projects of Zunyi Science and Technology Bureau (201718), the projects of Zunyi Medical University (ZMKD2013-022) and the supporting discipline construction fund of Zunyi Medical University Ph.D. authorization.

Compliance with ethical standards

Conflict of interest

All authors declare that there are no conflicts of interest.

References

  1. Adams MD et al (1992) Sequence identification of 2,375 human brain genes. Nature 355:632–634.  https://doi.org/10.1038/355632a0 CrossRefPubMedGoogle Scholar
  2. Araki M, Nanri H, Ejima K, Murasato Y, Fujiwara T, Nakashima Y, Ikeda M (1999) Antioxidant function of the mitochondrial protein SP-22 in the cardiovascular system. J Biol Chem 274:2271–2278.  https://doi.org/10.1074/jbc.274.4.2271 CrossRefPubMedGoogle Scholar
  3. Bahat A, Perlberg S, Melamed-Book N, Lauria I, Langer T, Orly J (2014) StAR enhances transcription of genes encoding the mitochondrial proteases involved in its own degradation. Mol Endocrinol 28:208–224.  https://doi.org/10.1210/me.2013-1275 CrossRefPubMedGoogle Scholar
  4. Bahat A et al (2015) Transcriptional activation of LON Gene by a new form of mitochondrial stress: a role for the nuclear respiratory factor 2 in StAR overload response (SOR). Mol Cell Endocrinol 408:62–72.  https://doi.org/10.1016/j.mce.2015.02.022 CrossRefPubMedGoogle Scholar
  5. Baker BM, Nargund AM, Sun T, Haynes CM (2012) Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2. PLoS Genet 8:e1002760.  https://doi.org/10.1371/journal.pgen.1002760 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bernales S, Morales Soto M, McCullagh E (2012) Unfolded protein stress in the endoplasmic reticulum and mitochondria: a role in neurodegeneration. Front Aging Neurosci 4:5.  https://doi.org/10.3389/fnagi.2012.00005 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bezawork-Geleta A, Saiyed T, Dougan DA, Truscott KN (2014) Mitochondrial matrix proteostasis is linked to hereditary paraganglioma: LON-mediated turnover of the human flavinylation factor SDH5 is regulated by its interaction with SDHA. FASEB J 28:1794–1804.  https://doi.org/10.1096/fj.13-242420 CrossRefPubMedGoogle Scholar
  8. Bota DA, Davies KJA (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4:674–680.  https://doi.org/10.1038/ncb836 CrossRefPubMedGoogle Scholar
  9. Bota DA, Davies KJA (2016) Mitochondrial Lon protease in human disease and aging: including an etiologic classification of Lon-related diseases and disorders. Free Radic Biol Med 100:188–198.  https://doi.org/10.1016/j.freeradbiomed.2016.06.031 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bota DA, Van Remmen H, Davies KJA (2002) Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Lett 532:103–106.  https://doi.org/10.1016/S0014-5793(02)03638-4 CrossRefPubMedGoogle Scholar
  11. Bota DA, Ngo JK, Davies KJA (2005) Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radic Biol Med 38:665–677.  https://doi.org/10.1016/j.freeradbiomed.2004.11.017 CrossRefPubMedGoogle Scholar
  12. Bukhari AI, Zipser D (1973) Mutants of Escherichia coli with a defect in the degradation of nonsense fragments. Nat New Biol 243:238–241.  https://doi.org/10.1038/newbio243238a0 CrossRefPubMedGoogle Scholar
  13. Bulteau A-L, Szweda LI, Friguet B (2006) Mitochondrial protein oxidation and degradation in response to oxidative stress and aging. Exp Gerontol 41:653–657.  https://doi.org/10.1016/j.exger.2006.03.013 CrossRefPubMedGoogle Scholar
  14. Cha S-S et al (2010) Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. EMBO J 29:3520–3530.  https://doi.org/10.1038/emboj.2010.226 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Charette MF, Henderson GW, Markovitz A (1981) ATP hydrolysis-dependent protease activity of the lon (capR) protein of Escherichia coli K-12. Proc Natl Acad Sci 78:4728–4732CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cheng C et al (2005) Identification and characterization of molecular interactions between mortalin/mtHsp70 and HSP60. Biochem J 391:185–190.  https://doi.org/10.1042/BJ20050861 CrossRefGoogle Scholar
  17. Cheng CW et al (2013) Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species. Cell Death Dis 4:e681.  https://doi.org/10.1038/cddis.2013.204 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chung CH, Goldberg AL (1981) The product of the lon (capR) gene in Escherichia coli is the ATP-dependent protease, protease La. Proc Natl Acad Sci 78:4931–4935CrossRefPubMedPubMedCentralGoogle Scholar
  19. Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–159.  https://doi.org/10.1146/annurev.nu.15.070195.001025 CrossRefPubMedGoogle Scholar
  20. Delaval E, Perichon M, Friguet B (2004) Age-related impairment of mitochondrial matrix aconitase and ATP-stimulated protease in rat liver and heart. Eur J Biochem 271:4559–4564.  https://doi.org/10.1111/j.1432-1033.2004.04422.x CrossRefPubMedGoogle Scholar
  21. Deocaris CC, Kaul SC, Wadhwa R (2006) On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperon 11:116–128.  https://doi.org/10.1379/CSC-144R.1 CrossRefGoogle Scholar
  22. Desautels M, Goldberg AL (1982) Demonstration of an ATP-dependent, vanadate-sensitive endoprotease in the matrix of rat liver mitochondria. J Biol Chem 257:11673–11679PubMedGoogle Scholar
  23. Fu GK, Markovitz DM (1998) The human LON protease binds to mitochondrial promoters in a single-stranded, site-specific, strand-specific manner. Biochemistry 37:1905–1909.  https://doi.org/10.1021/bi970928c CrossRefPubMedGoogle Scholar
  24. Fukuda R, Zhang H, Kim J-w, Shimoda L, Dang CV, Semenza Gregg L (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122.  https://doi.org/10.1016/j.cell.2007.01.047 CrossRefPubMedGoogle Scholar
  25. Gardner PR (2002) Aconitase: sensitive target and measure of superoxide. Methods in enzymology, vol 349. Academic Press, New York, pp 9–23.  https://doi.org/10.1016/S0076-6879(02)49317-2 CrossRefGoogle Scholar
  26. Goldberg AL (1972) Degradation of abnormal proteins in Escherichia coli. Proc Natl Acad Sci 69:422–426CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gottesman S, Zipser D (1978) Deg phenotype of Escherichia coli lon mutants. J Bacteriol 133:844–851PubMedPubMedCentralGoogle Scholar
  28. Granot Z et al (2007) Turnover of mitochondrial steroidogenic acute regulatory (StAR) protein by Lon protease: the unexpected effect of proteasome inhibitors. Mol Endocrinol 21:2164–2177.  https://doi.org/10.1210/me.2005-0458 CrossRefPubMedGoogle Scholar
  29. Haynes CM, Fiorese CJ, Lin Y-F (2013) Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends Cell Biol 23:311–318.  https://doi.org/10.1016/j.tcb.2013.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hetz C, Papa FR (2018) The unfolded protein response and cell fate control. Mol Cell 69:169–181.  https://doi.org/10.1016/j.molcel.2017.06.017 CrossRefPubMedGoogle Scholar
  31. Howard-Flanders P, Simson E, Theriot L (1964) A locus that controls filament formation and sensitivity to radiation in Escherichia coli K-12. Genetics 49:237–246PubMedPubMedCentralGoogle Scholar
  32. Jacobson J, Duchen MR, Hothersall J, Clark JB, Heales SJR (2005) Induction of mitochondrial oxidative stress in astrocytes by nitric oxide precedes disruption of energy metabolism. J Neurochem 95:388–395.  https://doi.org/10.1111/j.1471-4159.2005.03374.x CrossRefPubMedGoogle Scholar
  33. Jousse C, Oyadomari S, Novoa I, Lu P, Zhang Y, Harding HP, Ron D (2003) Inhibition of a constitutive translation initiation factor 2α phosphatase, CReP, promotes survival of stressed cells. J Cell Biol 163:767–775.  https://doi.org/10.1083/jcb.200308075 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jovaisaite V, Mouchiroud L, Auwerx J (2014) The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol 217:137–143.  https://doi.org/10.1242/jeb.090738 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kao TY et al (2015) Mitochondrial Lon regulates apoptosis through the association with Hsp60–mtHsp70 complex. Cell Death Dis 6:e1642.  https://doi.org/10.1038/cddis.2015.9 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kita K, Suzuki T, Ochi T (2012) Diphenylarsinic acid promotes degradation of glutaminase C by mitochondrial Lon protease. J Biol Chem 287:18163–18172.  https://doi.org/10.1074/jbc.M112.362699 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333–343.  https://doi.org/10.1016/j.freeradbiomed.2009.05.004 CrossRefPubMedGoogle Scholar
  38. Li Y, Dudek J, Guiard B, Pfanner N, Rehling P, Voos W (2004) The presequence translocase-associated protein import motor of mitochondria: Pam16 functions in an antagonistic manner to Pam18. J Biol Chem 279:38047–38054.  https://doi.org/10.1074/jbc.M404319200 CrossRefPubMedGoogle Scholar
  39. Li J, Lee B, Lee AS (2006) Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (puma) and noxa by p53. J Biol Chem 281:7260–7270.  https://doi.org/10.1074/jbc.M509868200 CrossRefPubMedGoogle Scholar
  40. Li Y et al (2014) Mitochondrial proteomic analysis reveals the molecular mechanisms underlying reproductive toxicity of zearalenone in MLTC-1 cells. Toxicology 324:55–67.  https://doi.org/10.1016/j.tox.2014.07.007 CrossRefPubMedGoogle Scholar
  41. Liu T, Lu B, Lee I, Ondrovicova G, Kutejova E, Suzuki CK (2004) DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate. J Biol Chem 279:13902–13910.  https://doi.org/10.1074/jbc.M309642200 CrossRefPubMedGoogle Scholar
  42. Lu B et al (2007) Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance. J Biol Chem 282:17363–17374.  https://doi.org/10.1074/jbc.M611540200 CrossRefPubMedGoogle Scholar
  43. Lu B et al (2013) Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell 49:121–132.  https://doi.org/10.1016/j.molcel.2012.10.023 CrossRefPubMedGoogle Scholar
  44. Lushchak OV, Piroddi M, Galli F, Lushchak VI (2014) Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep 19:8–15.  https://doi.org/10.1179/1351000213Y.0000000073 CrossRefPubMedGoogle Scholar
  45. Maas R (2001) Change of plasmid DNA structure, hypermethylation, and Lon-proteolysis as steps in a replicative cascade. Cell 105:945–955.  https://doi.org/10.1016/S0092-8674(01)00402-0 CrossRefPubMedGoogle Scholar
  46. Matsushima Y, Goto Y-i, Kaguni LS (2010) Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM). Proc Natl Acad Sci 107:18410–18415.  https://doi.org/10.1073/pnas.1008924107 CrossRefPubMedPubMedCentralGoogle Scholar
  47. McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551-R560.  https://doi.org/10.1016/j.cub.2006.06.054 CrossRefGoogle Scholar
  48. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13.  https://doi.org/10.1042/BJ20081386 CrossRefPubMedGoogle Scholar
  49. Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM (2012) Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337:587–590.  https://doi.org/10.1126/science.1223560 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ngo JK, Davies KJA (2009) Mitochondrial Lon protease is a human stress protein. Free Radic Biol Med 46:1042–1048.  https://doi.org/10.1016/j.freeradbiomed.2008.12.024 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Papa L, Germain D (2014) SirT3 regulates the mitochondrial unfolded protein response. Mol Cell Biol 34:699–710.  https://doi.org/10.1128/mcb.01337-13 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pellegrino MW, Nargund AM, Haynes CM (2013) Signaling the mitochondrial unfolded protein response. BBA Mol Cell Res 1833:410–416.  https://doi.org/10.1016/j.bbamcr.2012.02.019 CrossRefGoogle Scholar
  53. Pinti M, Gibellini L, Liu Y, Xu S, Lu B, Cossarizza A (2015) Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell Mol Life Sci 72:4807–4824.  https://doi.org/10.1007/s00018-015-2039-3 CrossRefPubMedGoogle Scholar
  54. Polo M et al (2017) Lon protease: a novel mitochondrial matrix protein in the interconnection between drug-induced mitochondrial dysfunction and endoplasmic reticulum stress. Br J Pharmacol 174:4409–4429.  https://doi.org/10.1111/bph.14045 CrossRefPubMedGoogle Scholar
  55. Pomatto LCD, Raynes R, Davies KJA (2017) The peroxisomal Lon protease LonP2 in aging and disease: functions and comparisons with mitochondrial Lon protease LonP1. Biol Rev 92:739–753.  https://doi.org/10.1111/brv.12253 CrossRefPubMedGoogle Scholar
  56. Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci 105:1638–1643.  https://doi.org/10.1073/pnas.0709336105 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Quirós PM et al (2014) ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep 8:542–556.  https://doi.org/10.1016/j.celrep.2014.06.018 CrossRefPubMedGoogle Scholar
  58. Rainbolt TK, Saunders JM, Wiseman RL (2014) Stress-responsive regulation of mitochondria through the ER unfolded protein response. Trends Endocrin Met 25:528–537.  https://doi.org/10.1016/j.tem.2014.06.007 CrossRefGoogle Scholar
  59. Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28:1563–1574.  https://doi.org/10.1023/A:1025682611389 CrossRefPubMedGoogle Scholar
  60. Rep M, Dijl JMV, Suda K, Schatz G, Grivell LA, Suzuki CK (1996) Promotion of mitochondrial membrane complex assembly by a proteolytically inactive yeast Lon. Science 274:103–106.  https://doi.org/10.1126/science.274.5284.103 CrossRefPubMedGoogle Scholar
  61. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Bio 8:519–529.  https://doi.org/10.1038/nrm2199 CrossRefGoogle Scholar
  62. Sarria R, Lyznik A, Vallejos CE, Mackenzie SA (1998) A cytoplasmic male sterility—associated mitochondrial peptide in common bean is post-translationally regulated. Plant Cell 10:1217–1228.  https://doi.org/10.1105/tpc.10.7.1217 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Schmidt O, Pfanner N, Meisinger C (2010) Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Bio 11:655–667.  https://doi.org/10.1038/nrm2959 CrossRefGoogle Scholar
  64. Senft D, Ronai ZeA (2015) UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci 40:141–148.  https://doi.org/10.1016/j.tibs.2015.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Shen XL et al (2013) An iTRAQ-based mitoproteomics approach for profiling the nephrotoxicity mechanisms of ochratoxin A in HEK 293 cells. J Proteom 78:398–415.  https://doi.org/10.1016/j.jprot.2012.10.010 CrossRefGoogle Scholar
  66. Shen XL et al (2014) Central role of Nix in the autophagic response to ochratoxin A. Food Chem Toxicol 69:202–209.  https://doi.org/10.1016/j.fct.2014.04.017 CrossRefPubMedGoogle Scholar
  67. Shibata E et al (2003) Enhancement of mitochondrial oxidative stress and up-regulation of antioxidant protein peroxiredoxin III/SP-22 in the mitochondria of human pre-eclamptic placentae. Placenta 24:698–705.  https://doi.org/10.1016/S0143-4004(03)00083-3 CrossRefPubMedGoogle Scholar
  68. Shineberg B, Zipser D (1973) The lon gene and degradation of β-galactosidase nonsense fragments. J Bacteriol 116:1469–1471PubMedPubMedCentralGoogle Scholar
  69. Sun F-C, Wei S, Li C-W, Chang Y-S, Chao C-C, Lai Y-K (2006) Localization of GRP78 to mitochondria under the unfolded protein response. Biochem J 396:31–39.  https://doi.org/10.1042/BJ20051916 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Suzuki CK, Suda K, Wang N, Schatz G (1994) Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science 264:273–276.  https://doi.org/10.1126/science.8146662 CrossRefPubMedGoogle Scholar
  71. Swamy KHS, Goldberg AL (1981) Escherichia coli contains eight soluble proteolytic activities, one being ATP dependent. Nature 292:652–654.  https://doi.org/10.1038/292652a0 CrossRefPubMedGoogle Scholar
  72. Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:306–314.  https://doi.org/10.1038/sj.emboj.7601972 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Teng H, Wu B, Zhao K, Yang G, Wu L, Wang R (2013) Oxygen-sensitive mitochondrial accumulation of cystathionine β-synthase mediated by Lon protease. Proc Natl Acad Sci 110:12679–12684.  https://doi.org/10.1073/pnas.1308487110 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Thomas RE, Andrews LA, Burman JL, Lin W-Y, Pallanck LJ (2014) PINK1–Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet 10:e1004279.  https://doi.org/10.1371/journal.pgen.1004279 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tian Q, Li T, Hou W, Zheng J, Schrum LW, Bonkovsky HL (2011) Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells. J Biol Chem 286:26424–26430.  https://doi.org/10.1074/jbc.M110.215772 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344.  https://doi.org/10.1111/j.1469-7793.2003.00335.x CrossRefPubMedPubMedCentralGoogle Scholar
  77. Van Dyck L, Pearce DA, Sherman F (1994) PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. J Biol Chem 269:238–242PubMedGoogle Scholar
  78. van der Laan M et al (2005) Pam17 is required for architecture and translocation activity of the mitochondrial protein import motor. Mol Cell Biol 25:7449–7458.  https://doi.org/10.1128/mcb.25.17.7449-7458.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Vance JE (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 265:7248–7256PubMedGoogle Scholar
  80. Venkatesh S, Lee J, Singh K, Lee I, Suzuki CK (2012) Multitasking in the mitochondrion by the ATP-dependent Lon protease. BBA-Mol Cell Res 1823:56–66.  https://doi.org/10.1016/j.bbamcr.2011.11.003 CrossRefGoogle Scholar
  81. Voos W (2013) Chaperone–protease networks in mitochondrial protein homeostasis. BBA Mol Cell Res 1833:388–399.  https://doi.org/10.1016/j.bbamcr.2012.06.005 CrossRefGoogle Scholar
  82. Wang N, Gottesman S, Willingham MC, Gottesman MM, Maurizi MR (1993) A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc Natl Acad Sci 90:11247–11251CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wang Y et al (2017) iTRAQ mitoproteome analysis Reveals Mechanisms of programmed cell death in Arabidopsis thaliana induced by ochratoxin A. Toxins 9:167.  https://doi.org/10.3390/toxins9050167 CrossRefPubMedCentralGoogle Scholar
  84. Watabe S, Hiroi T, Yamamoto Y, Fujioka Y, Hasegawa H, Yago N, Takahashp SY (1997) SP-22 is a thioredoxin-dependent peroxide reductase in mitochondria. Eur J Biochem 249:52–60.  https://doi.org/10.1111/j.1432-1033.1997.t01-1-00052.x CrossRefPubMedGoogle Scholar
  85. Watabe S, Hara M, Yamamoto M, Yoshida M, Yamamoto Y, Takahashi SY (2001) Activation of mitochondrial ATP-dependent protease by peptides and proteins. Tohoku J Exp Med 195:153–161.  https://doi.org/10.1620/tjem.195.153 CrossRefPubMedGoogle Scholar
  86. Welch GN, Loscalzo J (1998) Homocysteine and atherothrombosis. N Engl J Med 338:1042–1050.  https://doi.org/10.1056/nejm199804093381507 CrossRefPubMedGoogle Scholar
  87. Wiedemann N, van der Laan M, Hutu DP, Rehling P, Pfanner N (2007) Sorting switch of mitochondrial presequence translocase involves coupling of motor module to respiratory chain. J Cell Biol 179:1115–1122.  https://doi.org/10.1083/jcb.200709087 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wiseman RL, Haynes CM, Ron D (2010) SnapShot: The unfolded protein response. Cell 140:590  https://doi.org/10.1016/j.cell.2010.02.006 (e591–e592)CrossRefPubMedGoogle Scholar
  89. Witkin EM (1946) Inherited differences in sensitivity to radiation in Escherichia coli. Proc Natl Acad Sci 32:59–68CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yan L-J, Levine RL, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci 94:11168–11172CrossRefPubMedPubMedCentralGoogle Scholar
  91. Yu W, Sun Y, Guo S, Lu B (2011) The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum Mol Genet 20:3227–3240.  https://doi.org/10.1093/hmg/ddr235 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zhang X et al (2011) Disruption of the mitochondrial thioredoxin system as a cell death mechanism of cationic triphenylmethanes. Free Radic Biol Med 50:811–820.  https://doi.org/10.1016/j.freeradbiomed.2010.12.036 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Zhang B et al (2014) Protective role of the mitochondrial Lon protease 1 in ochratoxin A-induced cytotoxicity in HEK293 cells. J Proteom 101:154–168.  https://doi.org/10.1016/j.jprot.2014.02.017 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jieyeqi Yang
    • 1
  • Wenying Chen
    • 1
    • 2
  • Boyang Zhang
    • 5
    • 6
  • Fengli Tian
    • 3
  • Zheng Zhou
    • 1
    • 2
  • Xin Liao
    • 1
  • Chen Li
    • 1
  • Yi Zhang
    • 1
    • 2
  • Yanyan Han
    • 1
    • 2
  • Yan Wang
    • 4
  • Yuzhe Li
    • 7
  • Guo-Qing Wang
    • 8
  • Xiao Li Shen
    • 1
    • 2
  1. 1.Department of Food Quality and Safety, School of Public HealthZunyi Medical UniversityZunyiPeople’s Republic of China
  2. 2.Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou ProvinceZunyiPeople’s Republic of China
  3. 3.Depatment of OphthalmologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiPeople’s Republic of China
  4. 4.Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  5. 5.Department of Pharmacology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  6. 6.Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingPeople’s Republic of China
  7. 7.China National Center for Food Safety Risk AssessmentBeijingPeople’s Republic of China
  8. 8.Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiPeople’s Republic of China

Personalised recommendations