Archives of Toxicology

, Volume 92, Issue 6, pp 1925–1937 | Cite as

Prenatal arsenic exposure and dietary folate and methylcobalamin supplementation alter the metabolic phenotype of C57BL/6J mice in a sex-specific manner

  • Madelyn C. Huang
  • Christelle Douillet
  • Ellen N. Dover
  • Miroslav StýbloEmail author
Inorganic Compounds


Inorganic arsenic (iAs) is an established environmental diabetogen. The link between iAs exposure and diabetes is supported by evidence from adult human cohorts and adult laboratory animals. The contribution of prenatal iAs exposure to the development of diabetes and underlying mechanisms are understudied. The role of factors that modulate iAs metabolism and toxicity in adults and their potential to influence diabetogenic effects of prenatal iAs exposure are also unclear. The goal of this study was to determine if prenatal exposure to iAs impairs glucose metabolism in mice and if maternal supplementation with folate and methylcobalamin (B12) can modify this outcome. C57BL/6J dams were exposed to iAs in drinking water (0, 100, and 1000 µg As/L) and fed a folate/B12 adequate or supplemented diet from before mating to birth of offspring. After birth, dams and offspring drank deionized water and were fed the folate/B12 adequate diet. The metabolic phenotype of offspring was assessed over the course of 14 weeks. Male offspring from iAs-exposed dams fed the folate/B12-adequate diet developed fasting hyperglycemia and insulin resistance. Maternal folate/B12 supplementation rescued this phenotype but had only marginal effects on iAs metabolism in dams. The diabetogenic effects of prenatal iAs exposure in male offspring were not associated with changes in global DNA methylation in the liver. Only minimal effects of prenatal iAs exposure or maternal supplementation were observed in female offspring. These results suggest that prenatal iAs exposure impairs glucose metabolism in a sex-specific manner and that maternal folate/B12 supplementation may improve the metabolic phenotype in offspring. Further studies are needed to identify the mechanisms underlying these effects.


Arsenic Prenatal exposure Diabetes Vitamin Folate Methylcobalamin Dietary supplementation 



The authors would like to thank Dr. Zuzana Drobna (North Carolina State University, Raleigh, NC, USA) for her advice regarding prenatal folate and B12 supplementation. This work was funded by NIH 1R01ES022697 and R01 ES022697-03S1 Grants to M.S. and NIEHS F31ES027743 Grant to M.H. Additional support was provided by NIH Grant DK 056350 to the Nutrition Obesity Research Center at UNC.

Supplementary material

204_2018_2206_MOESM1_ESM.docx (553 kb)
Supplementary material 1 (DOCX 553 KB)


  1. Acharyya N, Deb B, Chattopadhyay S, Maiti S (2015) Arsenic-induced antioxidant depletion, oxidative DNA breakage, and tissue damages are prevented by the combined action of folate and vitamin B12. Biol Trace Elem Res 168(1):122–132. CrossRefPubMedGoogle Scholar
  2. American Institute of Nutrition (1977). AIN report of the AIN ad hoc committee on standards for nutritional studies. J Nutr 107:1340–1348CrossRefGoogle Scholar
  3. Anderson OS, Sant KE, Dolinoy DC (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism, and DNA methylation. J Nutr Biochem 23:853–859CrossRefPubMedPubMedCentralGoogle Scholar
  4. Argos M, Rathouz PJ, Pierce BL, Kalra T, Parvez F, Slavkovich V, Ahmed A, Chen Y, Ahsan H (2010) Dietary B vitamin intakes and urinary total arsenic concentration in the Health Effects of Arsenic Longitudinal Study (HEALS) cohort, Bangladesh. Eur J Nutr 49:473–481CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bonaventura MM, Bourguignon NS, Bizzozzero M, Rodriguez D, Ventura C, Cocca C, Libertun C, Lux-Lantos VA (2017) Arsenite in drinking water produces glucose intolerance in pregnant rats and their female offspring. Food Chem Toxicol 100:207–216CrossRefPubMedGoogle Scholar
  6. Broberg K, Ahmed S, Engström K, Hossain MB, Mlakar SJ, Bottai M, Grandér M, Raqib R, Vahter M (2014) Arsenic exposure in early pregnancy alters genome-wide DNA methylation in cord blood, particularly in boys. J Dev Orig Health Dis 5:288–298CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chattopadhyay S, Deb B, Maiti S (2012) Hepatoprotective role of vitamin B12 and folic acid in arsenic intoxicated rats. Drug Chem Toxicol 35:81–88CrossRefPubMedGoogle Scholar
  8. Chi L, Bian X, Gao B, Tu P, Ru H, Lu K (2017) The effects of an environmentally relevant level of arsenic on the gut microbiome and its functional metagenome. Toxicol Sci 160:193–204CrossRefPubMedGoogle Scholar
  9. Cho CE, Pannia E, Huot PSP, Sánchez-Hernández D, Kubant R, Dodington DW, Ward WE, Bazinet RP, Anderson GH (2015) Methyl vitamins contribute to obesogenic effects of a high multivitamin gestational diet and epigenetic alterations in hypothalamic feeding pathways in Wistar rat offspring. Mol Nutr Food Res 59:476–489CrossRefPubMedGoogle Scholar
  10. Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132:2393S–2400SCrossRefPubMedGoogle Scholar
  11. Currier JM, Svoboda M, Matoušek T, Dědina J, Stýblo M (2011) Direct analysis and stability of methylated trivalent arsenic metabolites in cells and tissues. Metallomics 3:1347–1354CrossRefPubMedPubMedCentralGoogle Scholar
  12. Currier JM, Douillet C, Drobná Z, Stýblo M (2016) Oxidation state specific analysis of arsenic species in tissues of wild-type and arsenic (+ 3 oxidation state) methyltransferase-knockout mice. J Environ Sci (China) 49:104–112CrossRefGoogle Scholar
  13. Dávila-Esqueda ME, Morales JMV, Jiménez-Capdeville ME, De la Cruz E, Falcón-Escobedo R, Chi-Ahumada E, Martin-Pérez S (2011) Low-level subchronic arsenic exposure from prenatal developmental stages to adult life results in an impaired glucose homeostasis. Exp Clin Endocrinol Diabetes 119:613–617CrossRefPubMedGoogle Scholar
  14. Ditzel EJ, Nguyen T, Parker P, Camenisch TD (2016) Effects of arsenite exposure during fetal development on energy metabolism and susceptibility to diet-induced fatty liver disease in male mice. Environ Health Perspect 124:201–209PubMedCrossRefGoogle Scholar
  15. Douillet C, Huang MC, Saunders RJ, Dover EN, Zhang C, Stýblo M (2017) Knockout of arsenic (+ 3 oxidation state) methyltransferase is associated with adverse metabolic phenotype in mice: the role of sex and arsenic exposure. Arch Toxicol 91:2617–2627CrossRefPubMedGoogle Scholar
  16. Gamble MV, Liu X, Ahsan H, Pilsner R, Ilievski V, Slavkovich V, Parvez F, Levy D, Factor-Litvak P, Graziano JH (2005) Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh. Environ Health Perspect 113:1683–1688CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gamble MV, Liu X, Ahsan H, Pilsner JR, Ilievski V, Slavkovich V, Parvez F, Chen Y, Levy D, Factor-Litvak P et al (2006) Folate and arsenic metabolism: a double-blind, placebo-controlled folic acid–supplementation trial in Bangladesh. Am J Clin Nutr 84:1093–1101CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gardner RM, Nermell B, Kippler M, Grandér M, Li L, Ekström E-C, Rahman A, Lönnerdal B, Hoque AMW, Vahter M (2011) Arsenic methylation efficiency increases during the first trimester of pregnancy independent of folate status. Reprod Toxicol 31:210–218CrossRefPubMedGoogle Scholar
  19. Hall MN, Gamble MV (2012) Nutritional manipulation of one-carbon metabolism: effects on arsenic methylation and toxicity. J Toxicol 2012:595307CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hall M, Gamble M, Slavkovich V, Liu X, Levy D, Cheng Z, van Geen A, Yunus M, Rahman M, Pilsner JR et al (2007) Determinants of arsenic metabolism: blood arsenic metabolites, plasma folate, cobalamin, and homocysteine concentrations in maternal-newborn pairs. Environ Health Perspect 115:1503–1509PubMedPubMedCentralGoogle Scholar
  21. Heck JE, Gamble MV, Chen Y, Graziano JH, Slavkovich V, Parvez F, Baron JA, Howe GR, Ahsan H (2007) Consumption of folate-related nutrients and metabolism of arsenic in Bangladesh. Am J Clin Nutr 85:1367–1374CrossRefPubMedGoogle Scholar
  22. Heindel JJ, Newbold R, Schug TT (2015) Endocrine disruptors and obesity. Nat Rev Endocrinol 11:653–661CrossRefPubMedGoogle Scholar
  23. Hernández-Zavala A, Matoušek T, Drobná Z, Paul DS, Walton F, Adair BM, Jiří D, Thomas DJ, Stýblo M (2008) Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer). J Anal At Spectrom 23:342–351CrossRefPubMedPubMedCentralGoogle Scholar
  24. Huang Y-K, Pu Y-S, Chung C-J, Shiue H-S, Yang M-H, Chen C-J, Hsueh Y-M (2008) Plasma folate level, urinary arsenic methylation profiles, and urothelial carcinoma susceptibility. Food Chem Toxicol 46:929–938CrossRefPubMedGoogle Scholar
  25. Hughes MF, Kenyon EM, Edwards BC, Mitchell CT, Razo LMD, Thomas DJ (2003) Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate. Toxicol Appl Pharmacol 191:202–210CrossRefPubMedGoogle Scholar
  26. Kuo C-C, Moon KA, Wang S-L, Silbergeld E, Navas-Acien A (2017) The association of arsenic metabolism with cancer, cardiovascular disease, and diabetes: a systematic review of the epidemiological evidence. Environ Health Perspect 125:087001CrossRefPubMedPubMedCentralGoogle Scholar
  27. Li L, Ekström E-C, Goessler W, Lönnerdal B, Nermell B, Yunus M, Rahman A, Arifeen SE, Persson L, Vahter M (2008) Nutritional status has marginal influence on the metabolism of inorganic arsenic in pregnant Bangladeshi women. Environ Health Perspect 116:315–321CrossRefPubMedGoogle Scholar
  28. Martin EM, Stýblo M, Fry RC (2017a) Genetic and epigenetic mechanisms underlying arsenic-associated diabetes mellitus: a perspective of the current evidence. Epigenomics 9:701–710CrossRefPubMedPubMedCentralGoogle Scholar
  29. Martin E, Smeester L, Bommarito PA, Grace MR, Boggess K, Kuban K, Karagas MR, Marsit CJ, O’Shea TM, Fry RC (2017b) Sexual epigenetic dimorphism in the human placenta: implications for susceptibility during the prenatal period. Epigenomics 9:267–278CrossRefPubMedPubMedCentralGoogle Scholar
  30. Maull EA, Ahsan H, Edwards J, Longnecker MP, Navas-Acien A, Pi J, Silbergeld EK, Styblo M, Tseng C-H, Thayer KA et al (2012) Evaluation of the association between arsenic and diabetes: a national toxicology program workshop review. Environ Health Perspect 120:1658–1670CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, Imperatore G, Linder B, Marcovina S, Pettitt DJ et al (2017) Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N Engl J Med 376:1419–1429CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mukherjee S, Das D, Mukherjee M, Das AS, Mitra C (2006) Synergistic effect of folic acid and vitamin B12 in ameliorating arsenic-induced oxidative damage in pancreatic tissue of rat. J Nutr Biochem 17:319–327Google Scholar
  33. Murko M, Elek B, Styblo M, Thomas D, Francesconi K (2018) Dose and diet-sources of arsenic intake in mouse in utero exposure scenarios. Chem Res Toxicol 31:156–164CrossRefPubMedGoogle Scholar
  34. Petersen MC, Vatner DF, Shulman GI (2017) Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol 13:572–587CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pilsner JR, Hall MN, Liu X, Ilievski V, Slavkovich V, Levy D, Factor-Litvak P, Yunus M, Rahman M, Graziano JH et al (2012) Influence of prenatal arsenic exposure and newborn sex on global methylation of cord blood DNA. PLoS ONE 7:e37147CrossRefPubMedPubMedCentralGoogle Scholar
  36. Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951CrossRefPubMedGoogle Scholar
  37. Rodriguez KF, Ungewitter EK, Crespo-Mejias Y, Liu C, Nicol B, Kissling GE, Yao HH-C (2016) Effects of in utero exposure to arsenic during the second half of gestation on reproductive end points and metabolic parameters in female CD-1 mice. Environ Health Perspect 124:336–343CrossRefPubMedGoogle Scholar
  38. Rojas D, Rager JE, Smeester L, Bailey KA, Drobná Z, Rubio-Andrade M, Stýblo M, García-Vargas G, Fry RC (2015) Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci 143:97–106CrossRefPubMedGoogle Scholar
  39. Rowley WR, Bezold C, Arikan Y, Byrne E, Krohe S (2017) Diabetes 2030: insights from yesterday, today, and future trends. Popul Health Manag 20:6–12CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sanchez-Soria P, Broka D, Quach S, Hardwick RN, Cherrington NJ, Camenisch TD (2014) Fetal exposure to arsenic results in hyperglycemia, hypercholesterolemia, and nonalcoholic fatty liver disease in adult mice. J Toxicol Health 1:1CrossRefGoogle Scholar
  41. Schmitz JC, Grindey GB, Schultz RM, Priest DG (1994) Impact of dietary folic acid on reduced folates in mouse plasma and tissues. Relationship to dideazatetrahydrofolate sensitivity. Biochem Pharmacol 48:319–325CrossRefPubMedGoogle Scholar
  42. Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246CrossRefPubMedGoogle Scholar
  43. Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78:1093–1103PubMedPubMedCentralGoogle Scholar
  44. Spiegelstein O, Lu X, Le XC, Troen A, Selhub J, Melnyk S, James SJ, Finnell RH (2003) Effects of dietary folate intake and folate binding protein-1 (Folbp1) on urinary speciation of sodium arsenate in mice. Toxicol Lett 145:167–174CrossRefPubMedGoogle Scholar
  45. Spiegelstein O, Lu X, Le XC, Troen A, Selhub J, Melnyk S, James SJ, Finnell RH (2005) Effects of dietary folate intake and folate binding protein-2 (Folbp2) on urinary speciation of sodium arsenate in mice. Environ Toxicol Pharmacol 19:1–7CrossRefPubMedGoogle Scholar
  46. Sung T-C, Huang J-W, Guo H-R (2015). Association between arsenic exposure and diabetes: a meta-analysis. Biomed Res Int 2015: 368087PubMedPubMedCentralGoogle Scholar
  47. Thayer KA, Heindel JJ, Bucher JR, Gallo MA (2012) Role of environmental chemicals in diabetes and obesity: a national toxicology program workshop review. Environ Health Perspect 120:779–789CrossRefPubMedPubMedCentralGoogle Scholar
  48. Thomas DJ, Li J, Waters SB, Xing W, Adair BM, Drobna Z, Devesa V, Styblo M (2007) Arsenic (+ 3 oxidation state) methyltransferase and the methylation of arsenicals. Exp Biol Med (Maywood) 232:3–13Google Scholar
  49. Tsang V, Fry RC, Niculescu MD, Rager JE, Saunders J, Paul DS, Zeisel SH, Waalkes MP, Stýblo M, Drobná Z (2012) The epigenetic effects of a high prenatal folate intake in male mouse fetuses exposed in utero to arsenic. Toxicol Appl Pharmacol 264:439–450CrossRefPubMedPubMedCentralGoogle Scholar
  50. United States Environmental Protection Agency (2001). Technical fact sheet: final rule of arsenic in drinking water. EPA 815-F-00-016Google Scholar
  51. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wlodarczyk B, Spiegelstein O, Gelineau-van Waes J, Vorce RL, Lu X, Le CX, Finnell RH (2001) Arsenic-induced congenital malformations in genetically susceptible folate binding protein-2 knockout mice. Toxicol Appl Pharmacol 177:238–246CrossRefPubMedGoogle Scholar
  53. Wlodarczyk B, Spiegelstein O, Hill D, Le XC, Finnell RH (2012) Arsenic urinary speciation in Mthfr deficient mice injected with sodium arsenate. Toxicol Lett 215:214–218CrossRefPubMedGoogle Scholar
  54. World Health Organization (2016) Global report on diabetes. WHO Library cataloguing-in-publication data.
  55. World Health Organization (2017) Guidelines for drinking-water quality: Fourth edition incorporating the first addendum. WHO library cataloguing-in-publication data.
  56. Yadav DK, Shrestha S, Lillycrop KA, Joglekar CV, Pan H, Holbrook JD, Fall CH, Yajnik CS, Chandak GR (2018) Vitamin B12 supplementation influences methylation of genes associated with type 2 diabetes and its intermediate traits. Epigenomics 10:71–90CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Madelyn C. Huang
    • 1
  • Christelle Douillet
    • 2
  • Ellen N. Dover
    • 1
  • Miroslav Stýblo
    • 1
    • 2
    Email author
  1. 1.Curriculum in Toxicology, School of MedicineUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Department of Nutrition, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations