Advertisement

Archives of Toxicology

, Volume 92, Issue 6, pp 2119–2135 | Cite as

Loss of Wilms tumor 1 protein is a marker for apoptosis in response to replicative stress in leukemic cells

  • Miriam Pons
  • Claudia M. Reichardt
  • Dorle Hennig
  • Abinaya Nathan
  • Nicole Kiweler
  • Carol Stocking
  • Christian Wichmann
  • Markus Christmann
  • Falk Butter
  • Sigrid Reichardt
  • Günter Schneider
  • Thorsten Heinzel
  • Christoph Englert
  • Jörg Hartkamp
  • Oliver H. Krämer
  • Nisintha Mahendrarajah
Genotoxicity and Carcinogenicity

Abstract

A remaining expression of the transcription factor Wilms tumor 1 (WT1) after cytotoxic chemotherapy indicates remaining leukemic clones in patients. We determined the regulation and relevance of WT1 in leukemic cells exposed to replicative stress and DNA damage. To induce these conditions, we used the clinically relevant chemotherapeutics hydroxyurea and doxorubicin. We additionally treated cells with the pro-apoptotic kinase inhibitor staurosporine. Our data show that these agents promote apoptosis to a variable extent in a panel of 12 leukemic cell lines and that caspases cleave WT1 during apoptosis. A chemical inhibition of caspases as well as an overexpression of mitochondrial, anti-apoptotic BCL2 family proteins significantly reduces the processing of WT1 and cell death in hydroxyurea-sensitive acute promyelocytic leukemia cells. Although the reduction of WT1 correlates with the pharmacological efficiency of chemotherapeutics in various leukemic cells, the elimination of WT1 by different strategies of RNA interference (RNAi) does not lead to changes in the cell cycle of chronic myeloid leukemia K562 cells. RNAi against WT1 does also not increase the extent of apoptosis and the accumulation of γH2AX in K562 cells exposed to hydroxyurea. Likewise, a targeted genetic depletion of WT1 in primary oviduct cells does not increase the levels of γH2AX. Our findings position WT1 as a downstream target of the apoptotic process that occurs in response to cytotoxic forms of replicative stress and DNA damage.

Keywords

Apoptosis DNA damage Caspase Hydroxyurea Leukemia Replicative stress WT1 

Notes

Acknowledgements

We thank Christina Brachetti and Birgit Rasenberger (Department of Toxicology, UM Mainz, Germany), and Christiane Becker (UKE Aachen, Germany) for excellent technical support, and Richard Moriggl, Medical University Vienna, for BCL2/BCL-XL expression constructs. Gesine Bug (University Clinic Frankfurt/Main, Germany) and all members of the Department of Toxicology, UM Mainz were excellent discussion partners. Grant support: German Cancer Aid (#110909 and #110125 to OHK, and #109528 to CS/CE), Wilhelm Sander Foundation (#2010.078.2 to OHK), and Deutsche Forschungsgemeinschaft (#KR2291/5-1 and KR2291/7-1 to OHK).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

204_2018_2202_MOESM1_ESM.tif (26.7 mb)
Fig. S1 Cell cycle profiles of leukemic cells exposed to replicative stress. aRepresentative flow cytometry profiles of PI-stained, fixed NB4 and K562 cells that were treated with 0.5 mM HU for 24 h. bHEL and MV4-11 cells were treated with 1 mM HU and BV-173 cells with 0.5 mM HU for 24 h. Immunoblots show WT1 expression; β-Actin, HSP90 and LDH, loading controls. Percentage of subG1 fractions in the cell cultures are stated below. cKCL-22 and KYO-01 cells were treated with 0.5 mM HU for 24 h. Immunoblots show expression of WT1; HSP90, loading control. dKCL-22 and KYO-01 cells treated as described were analyzed for cell cycle distributions via flow cytometry; n=3±SD; two-way ANOVA; Bonferroni’s multiple comparisons test; *p<0.5, ***p<0.001, ****p<0.0001 (TIF 27359 KB)
204_2018_2202_MOESM2_ESM.tif (26.1 mb)
Fig. S2 BAX and BAK expression after replicative stress induced by hydroxyurea. Cells were treated with 0.5 mM HU for 12 h. BAX and BAK levels were analyzed by immunoblot; α-Tubulin, loading control; Densitometric evaluation of BAK and BAX normalized to α-Tubulin; n=3±SD (BAK); n=6±SD (BAX/NB4); n=8±SD (BAX/K562) (TIF 26719 KB)
204_2018_2202_MOESM3_ESM.xlsx (66 kb)
Supplementary material 3 (XLSX 65 KB)
204_2018_2202_MOESM4_ESM.xlsx (20 kb)
Supplementary material 4 (XLSX 20 KB)
204_2018_2202_MOESM5_ESM.xlsx (77 kb)
Supplementary material 5 (XLSX 77 KB)
204_2018_2202_MOESM6_ESM.pdf (1.3 mb)
Supplementary material 6 (PDF 1357 KB)
204_2018_2202_MOESM7_ESM.docx (19 kb)
Supplementary material 7 (DOCX 18 KB)

References

  1. Ariyaratana S, Loeb DM (2007) The role of the Wilms tumour gene (WT1) in normal and malignant haematopoiesis. Expert Rev Mol Med 9(14):1–17.  https://doi.org/10.1017/S1462399407000336 CrossRefPubMedGoogle Scholar
  2. Bansal H, Bansal S, Rao M et al (2010) Heat shock protein 90 regulates the expression of Wilms tumor 1 protein in myeloid leukemias. Blood 116(22):4591–4599.  https://doi.org/10.1182/blood-2009-10-247239 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bansal H, Seifert T, Bachier C et al (2012) The transcription factor Wilms tumor 1 confers resistance in myeloid leukemia cells against the proapoptotic therapeutic agent TRAIL (tumor necrosis factor alpha-related apoptosis-inducing ligand) by regulating the antiapoptotic protein Bcl-xL. J Biol Chem 287(39):32875–32880.  https://doi.org/10.1074/jbc.C112.366559 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Benito A, Grillot D, Nunez G, Fernandez-Luna JL (1995) Regulation and function of Bcl-2 during differentiation-induced cell death in HL-60 promyelocytic cells. Am J Pathol 146(2):481–490PubMedPubMedCentralGoogle Scholar
  5. Benito A, Silva M, Grillot D, Nunez G, Fernandez-Luna JL (1996) Apoptosis induced by erythroid differentiation of human leukemia cell lines is inhibited by Bcl-XL. Blood 87(9):3837–3843PubMedGoogle Scholar
  6. Bergmann L, Miething C, Maurer U et al (1997) High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood 90(3):1217–1225PubMedGoogle Scholar
  7. Beyer M, Kiweler N, Mahboobi S, Krämer OH (2017) How to distinguish between the activity of HDAC1-3 and HDAC6 with western blot. Methods Mol Biol 1510:355–364.  https://doi.org/10.1007/978-1-4939-6527-4_26 CrossRefPubMedGoogle Scholar
  8. Bongso A, Ng SC, Sathananthan H, Ng PL, Rauff M, Ratnam SS (1989) Establishment of human ampullary cell cultures. Hum Reprod 4(5):486–494CrossRefPubMedGoogle Scholar
  9. Bourkoula K, Englert C, Giaisi M, Kohler R, Krammer PH, Li-Weber M (2014) The Wilms’ tumor suppressor WT1 enhances CD95L expression and promotes activation-induced cell death in leukemic T cells. Int J Cancer 134(2):291–300.  https://doi.org/10.1002/ijc.28379 CrossRefPubMedGoogle Scholar
  10. Buchwald M, Pietschmann K, Müller JP, Böhmer FD, Heinzel T, Krämer OH (2010) Ubiquitin conjugase UBCH8 targets active FMS-like tyrosine kinase 3 for proteasomal degradation. Leukemia 24(8):1412–1421.  https://doi.org/10.1038/leu.2010.114 CrossRefPubMedGoogle Scholar
  11. Carrington D, Algar E (2000) Overexpression of murine WT1 +/+ and −/− isoforms has no effect on chemoresistance but delays differentiation in the K562 leukemia cell line. Leuk Res 24(11):927–936CrossRefPubMedGoogle Scholar
  12. Cruet-Hennequart S, Prendergast AM, Shaw G, Barry FP, Carty MP (2012) Doxorubicin induces the DNA damage response in cultured human mesenchymal stem cells. Int J Hematol 96(5):649–656.  https://doi.org/10.1007/s12185-012-1196-5 CrossRefPubMedGoogle Scholar
  13. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63.  https://doi.org/10.1038/nrm3722 CrossRefPubMedGoogle Scholar
  14. Delia D, Aiello A, Soligo D et al (1992) bcl-2 proto-oncogene expression in normal and neoplastic human myeloid cells. Blood 79(5):1291–1298PubMedGoogle Scholar
  15. Dobbelstein M, Sørensen CS (2015) Exploiting replicative stress to treat cancer. Nat Rev Drug Discov 14(6):405–423.  https://doi.org/10.1038/nrd4553 CrossRefPubMedGoogle Scholar
  16. Ellisen LW, Carlesso N, Cheng T, Scadden DT, Haber DA (2001) The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J 20(8):1897–1909.  https://doi.org/10.1093/emboj/20.8.1897 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fulda S (2015) Targeting extrinsic apoptosis in cancer: challenges and opportunities. Semin Cell Dev Biol 39:20–25.  https://doi.org/10.1016/j.semcdb.2015.01.006 CrossRefPubMedGoogle Scholar
  18. Gianfaldoni G, Mannelli F, Ponziani V et al (2010) Early reduction of WT1 transcripts during induction chemotherapy predicts for longer disease free and overall survival in acute myeloid leukemia. Haematologica 95(5):833–836.  https://doi.org/10.3324/haematol.2009.011908 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gray JX, McMillen L, Mollee P et al (2012) WT1 expression as a marker of minimal residual disease predicts outcome in acute myeloid leukemia when measured post-consolidation. Leuk Res 36(4):453–458.  https://doi.org/10.1016/j.leukres.2011.09.005 CrossRefPubMedGoogle Scholar
  20. Grimwade D, Vyas P, Freeman S (2010) Assessment of minimal residual disease in acute myeloid leukemia. Curr Opin Oncol 22(6):656–663.  https://doi.org/10.1097/CCO.0b013e32833ed831 CrossRefPubMedGoogle Scholar
  21. Hartkamp J, Carpenter B, Roberts SG (2010) The Wilms’ tumor suppressor protein WT1 is processed by the serine protease HtrA2/Omi. Mol Cell 37(2):159–171.  https://doi.org/10.1016/j.molcel.2009.12.023 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hastie ND (2017) Wilms’ tumour 1 (WT1) in development, homeostasis and disease. Development 144(16):2862–2872.  https://doi.org/10.1242/dev.153163 CrossRefPubMedGoogle Scholar
  23. Hosen N, Shirakata T, Nishida S et al (2007) The Wilms’ tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia 21(8):1783–1791.  https://doi.org/10.1038/sj.leu.2404752 CrossRefPubMedGoogle Scholar
  24. Huff V (2011) Wilms’ tumours: about tumour suppressor genes, an oncogene and a chameleon gene. Nat Rev Cancer 11(2):111–121.  https://doi.org/10.1038/nrc3002 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ito K, Oji Y, Tatsumi N et al (2006) Antiapoptotic function of 17AA(+)WT1 (Wilms’ tumor gene) isoforms on the intrinsic apoptosis pathway. Oncogene 25(30):4217–4229.  https://doi.org/10.1038/sj.onc.1209455 CrossRefPubMedGoogle Scholar
  26. Itzykson R, Fenaux P, Solary E (2013) Chronic myelomonocytic leukemia: myelodysplastic or myeloproliferative? Best practice research. Clin Haematol 26(4):387–400.  https://doi.org/10.1016/j.beha.2013.09.006 CrossRefGoogle Scholar
  27. Krämer OH, Knauer SK, Zimmermann D, Stauber RH, Heinzel T (2008) Histone deacetylase inhibitors and hydroxyurea modulate the cell cycle and cooperatively induce apoptosis. Oncogene 27(6):732–740.  https://doi.org/10.1038/sj.onc.1210677 CrossRefPubMedGoogle Scholar
  28. Kühnl A, Kaiser M, Neumann M et al (2011) High expression of IGFBP2 is associated with chemoresistance in adult acute myeloid leukemia. Leuk Res 35(12):1585–1590.  https://doi.org/10.1016/j.leukres.2011.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lapillonne H, Renneville A, Auvrignon A et al (2006) High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia. J Clin Oncol 24(10):1507–1515.  https://doi.org/10.1200/JCO.2005.03.5303 CrossRefPubMedGoogle Scholar
  30. Li X, Li Y, Yuan T et al (2014) Exogenous expression of WT1 gene influences U937 cell biological behaviors and activates MAPK and JAK-STAT signaling pathways. Leukemia Res 38(8):931–939.  https://doi.org/10.1016/j.leukres.2014.05.006 CrossRefGoogle Scholar
  31. Loeb DM (2006) WT1 influences apoptosis through transcriptional regulation of Bcl-2 family members. Cell Cycle 5(12):1249–1253.  https://doi.org/10.4161/cc.5.12.2807 CrossRefPubMedGoogle Scholar
  32. Lyu Y, Lou J, Yang Y et al (2017) Dysfunction of the WT1-MEG3 signaling promotes AML leukemogenesis via p53-dependent and -independent pathways. Leukemia.  https://doi.org/10.1038/leu.2017.116 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Madaan K, Kaushik D, Verma T (2012) Hydroxyurea: a key player in cancer chemotherapy. Expert Rev Anticancer Ther 12(1):19–29.  https://doi.org/10.1586/era.11.175 CrossRefPubMedGoogle Scholar
  34. Mahendrarajah N, Paulus R, Krämer OH (2016) Histone deacetylase inhibitors induce proteolysis of activated CDC42-associated kinase-1 in leukemic cells. J Cancer Res Clin Oncol 142(11):2263–2273.  https://doi.org/10.1007/s00432-016-2229-x CrossRefPubMedGoogle Scholar
  35. Makki MS, Heinzel T, Englert C (2008) TSA downregulates Wilms tumor gene 1 (Wt1) expression at multiple levels. Nucleic Acids Res 36(12):4067–4078.  https://doi.org/10.1093/nar/gkn356 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Marx-Blümel L, Marx C, Kühne M, Sonnemann J (2017) Assessment of HDACi-Induced Cytotoxicity. Methods Mol Biol 1510:23–45.  https://doi.org/10.1007/978-1-4939-6527-4_3 CrossRefPubMedGoogle Scholar
  37. Miglino M, Colombo N, Pica G et al (2011) WT1 overexpression at diagnosis may predict favorable outcome in patients with de novo non-M3 acute myeloid leukemia. Leuk Lymphoma 52(10):1961–1969.  https://doi.org/10.3109/10428194.2011.585673 CrossRefPubMedGoogle Scholar
  38. Montano G, Cesaro E, Fattore L et al (2013) Role of WT1-ZNF224 interaction in the expression of apoptosis-regulating genes. Hum Mol Genet 22(9):1771–1782.  https://doi.org/10.1093/hmg/ddt027 CrossRefPubMedGoogle Scholar
  39. Montano G, Vidovic K, Palladino C et al (2015) WT1-mediated repression of the proapoptotic transcription factor ZNF224 is triggered by the BCR-ABL oncogene. Oncotarget 6(29):28223–28237.  https://doi.org/10.18632/oncotarget.4950 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ni Chonghaile T, Letai A (2008) Mimicking the BH3 domain to kill cancer cells. Oncogene 27 Suppl 1:S149–S157  https://doi.org/10.1038/onc.2009.52 CrossRefPubMedGoogle Scholar
  41. Nikolova T, Kiweler N, Krämer OH (2017) Interstrand crosslink repair as a target for HDAC inhibition. Trends Pharmacol Sci.  https://doi.org/10.1016/j.tips.2017.05.009 PubMedCrossRefGoogle Scholar
  42. Park DJ, Vuong PT, de Vos S, Douer D, Koeffler HP (2003) Comparative analysis of genes regulated by PML/RAR alpha and PLZF/RAR alpha in response to retinoic acid using oligonucleotide arrays. Blood 102(10):3727–3736.  https://doi.org/10.1182/blood-2003-02-0412 CrossRefPubMedGoogle Scholar
  43. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pule GD, Mowla S, Novitzky N, Wiysonge CS, Wonkam A (2015) A systematic review of known mechanisms of hydroxyurea-induced fetal hemoglobin for treatment of sickle cell disease. Expert Rev Hematol 8(5):669–679.  https://doi.org/10.1586/17474086.2015.1078235 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rampal R, Figueroa ME (2016) Wilms tumor 1 mutations in the pathogenesis of acute myeloid leukemia. Haematologica 101(6):672–679.  https://doi.org/10.3324/haematol.2015.141796 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rampal R, Alkalin A, Madzo J et al (2014) DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. Cell Rep 9(5):1841–1855.  https://doi.org/10.1016/j.celrep.2014.11.004 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Renshaw J, Orr RM, Walton MI et al (2004) Disruption of WT1 gene expression and exon 5 splicing following cytotoxic drug treatment: antisense down-regulation of exon 5 alters target gene expression and inhibits cell survival. Mol Cancer Therap 3(11):1467–1484Google Scholar
  48. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868CrossRefPubMedGoogle Scholar
  49. Ruan J, Gao S, Yang J, Li H, Huang H, Zheng X (2018) WT1 protein is cleaved by caspase-3 in apoptotic leukemic cells. Leuk Lymphoma 59(1):162–170.  https://doi.org/10.1080/10428194.2017.1312368 CrossRefPubMedGoogle Scholar
  50. Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M (2011) Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145(4):529–542.  https://doi.org/10.1016/j.cell.2011.03.041 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schneider G, Krämer OH (2011) NFkappaB/p53 crosstalk—a promising new therapeutic target. Biochim Biophys Acta 1815(1):90–103.  https://doi.org/10.1016/j.bbcan.2010.10.003 PubMedCrossRefGoogle Scholar
  52. Shandilya J, Toska E, Richard DJ, Medler KF, Roberts SG (2014) WT1 interacts with MAD2 and regulates mitotic checkpoint function. Nat Commun 5:4903.  https://doi.org/10.1038/ncomms5903 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Simpson LA, Burwell EA, Thompson KA, Shahnaz S, Chen AR, Loeb DM (2006) The antiapoptotic gene A1/BFL1 is a WT1 target gene that mediates granulocytic differentiation and resistance to chemotherapy. Blood 107(12):4695–4702.  https://doi.org/10.1182/blood-2005-10-4025 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Svensson E, Vidovic K, Lassen C et al (2007) Deregulation of the Wilms’ tumour gene 1 protein (WT1) by BCR/ABL1 mediates resistance to imatinib in human leukaemia cells. Leukemia 21(12):2485–2494.  https://doi.org/10.1038/sj.leu.2404924 CrossRefPubMedGoogle Scholar
  55. Toledo LI, Altmeyer M, Rask MB et al (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155(5):1088–1103.  https://doi.org/10.1016/j.cell.2013.10.043 CrossRefPubMedGoogle Scholar
  56. Treude F, Kappes F, Fahrenkamp D et al (2014) Caspase-8-mediated PAR-4 cleavage is required for TNFalpha-induced apoptosis. Oncotarget 5(10):2988–2998.  https://doi.org/10.18632/oncotarget.1634 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Varma N, Anand MS, Varma S, Juneja SS (2011) Role of hTERT and WT1 gene expression in disease progression and imatinib responsiveness of patients with BCR-ABL positive chronic myeloid leukemia. Leuk Lymphoma 52(4):687–693.  https://doi.org/10.3109/10428194.2010.550978 CrossRefPubMedGoogle Scholar
  58. Wang Y, Xiao M, Chen X et al (2015) WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol Cell 57(4):662–673.  https://doi.org/10.1016/j.molcel.2014.12.023 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Warsch W, Kollmann K, Eckelhart E et al (2011) High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood 117(12):3409–3420.  https://doi.org/10.1182/blood-2009-10-248211 CrossRefPubMedGoogle Scholar
  60. Wu Y, Mehew JW, Heckman CA, Arcinas M, Boxer LM (2001) Negative regulation of bcl-2 expression by p53 in hematopoietic cells. Oncogene 20(2):240–251.  https://doi.org/10.1038/sj.onc.1204067 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Miriam Pons
    • 1
  • Claudia M. Reichardt
    • 2
  • Dorle Hennig
    • 3
    • 9
  • Abinaya Nathan
    • 2
  • Nicole Kiweler
    • 1
  • Carol Stocking
    • 4
  • Christian Wichmann
    • 5
  • Markus Christmann
    • 1
  • Falk Butter
    • 6
  • Sigrid Reichardt
    • 3
  • Günter Schneider
    • 7
  • Thorsten Heinzel
    • 3
  • Christoph Englert
    • 2
    • 3
  • Jörg Hartkamp
    • 8
  • Oliver H. Krämer
    • 1
  • Nisintha Mahendrarajah
    • 1
  1. 1.Department of ToxicologyUniversity Medical CenterMainzGermany
  2. 2.Molecular GeneticsLeibniz Institute for Age Research, Fritz-Lipmann-InstituteJenaGermany
  3. 3.Department of Biochemistry, Institute of Biochemistry and Biophysics, Center for Molecular BiomedicineFriedrich-Schiller-University JenaJenaGermany
  4. 4.Heinrich Pette Institute, Leibniz Institute for Experimental VirologyHamburgGermany
  5. 5.Department of Transfusion Medicine, Cell Therapeutics and HemostaseologyLudwig-Maximilian University HospitalMunichGermany
  6. 6.Institute of Molecular Biology (IMB)MainzGermany
  7. 7.Klinik und Poliklinik für Innere Medizin IITechnical University of MunichMunichGermany
  8. 8.Institute of Biochemistry and Molecular Biology, Medical SchoolRWTH Aachen UniversityAachenGermany
  9. 9.Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations