Advertisement

Archives of Toxicology

, Volume 92, Issue 6, pp 2001–2012 | Cite as

EPHX1 rs1051740 T>C (Tyr113His) is strongly associated with acute myeloid leukemia and KMT2A rearrangements in early age

  • Gisele Dallapicola Brisson
  • Bruno de Almeida Lopes
  • Francianne Gomes Andrade
  • Filipe Vicente dos Santos Bueno
  • Ingrid Sardou-Cezar
  • Bruno Alves de Aguiar Gonçalves
  • Eugênia Terra-Granado
  • Flávio Henrique Paraguassú-Braga
  • Maria S. Pombo-de-Oliveira
Toxicogenomics

Abstract

Experimental and epidemiological data have shown that acute myeloid leukemia in early-age (i-AML) originates prenatally. The risk association between transplacental exposure to benzene metabolites and i-AML might be influenced by genetic susceptibility. In this study, we investigated the relationship between genetic polymorphisms in CYP2E1, EPHX1, MPO, NQO1, GSTM1 and GSTT1 genes, and i-AML risk. The study included 101 i-AMLs and 416 healthy controls. Genomic DNA from study subjects was purified from bone marrow or peripheral blood aspirates and genotyped for genetic polymorphisms by real-time PCR allelic discrimination, Sanger sequencing and multiplex PCR. Crude and adjusted odds ratios (OR, adjOR, respectively) with 95% confidence intervals (95% CI) were assessed using unconditional logistic regression to estimate the magnitude of risk associations. EPHX1 rs1051740 T>C was associated with i-AML risk under the co-dominant (adjOR 3.04, P = 0.003) and recessive (adjOR 2.99, P = 0.002) models. In stratified analysis, EPHX1 rs1051740 was associated with increased risk for i-AML with KMT2A rearrangement (adjOR 3.06, P = 0.045), i-AML with megakaryocytic differentiation (adjOR 5.10, P = 0.008), and i-AML with type I mutation (adjOR 2.02, P = 0.037). EPHX1 rs1051740-rs2234922 C-G haplotype was also associated with increased risk for i-AML (adjOR 2.55, P = 0.043), and for i-AML with KMT2A rearrangement (adjOR 3.23, P = 0.034). Since EPHX1 enzyme is essential in cellular defense against epoxides, the diminished enzymatic activity conferred by the variant allele C could explain the risk associations found for i-AML. In conclusion, EPHX1 rs1051740 plays an important role in i-AML’s genetic susceptibility by modulating the carcinogenic effects of epoxide exposures in the bone marrow.

Keywords

EPHX1 KMT2A/MLL-r Infant AML Genetic polymorphisms 

Notes

Acknowledgements

We kindly thank all children and their parents who participated in the study. We also thank Profª Ana Rossini for scientific advice, Elda Pereira Noronha and all technical staff of the Pediatric Hematology-Oncology Research Program of INCA for their work with childhood leukemia diagnosis, and all the collaborators of the Brazilian Study Group of Childhood Acute Myeloid Leukemia (IMol-AMLBSG). This work was supported by grants from the National Council of Technological and Scientific Development (CNPq #301594/2015-5) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ # E_26/110.169/2013).

Author contributions

GDB wrote the manuscript. GDB, BAL and BAAG performed genotyping assays of cases and controls, and contributed to data collection and DNA samples preparation of controls. BAL contributed to experimental procedures set ups and statistical analyses. FGA, FVSB, ISC and GDB worked on the molecular characterization of cases. ETG worked on cases’ diagnosis. FHPB provided controls samples. MSPO contributed to the conception and critical analysis of the study and the manuscript.

Compliance with ethical standards

Ethical standards

The study was performed in accordance with the 1964 Declaration of Helsinki and its later amendments. The Ethics and Scientific Committee of Instituto Nacional de Câncer and all collaborating Brazilian institutions have approved the study (CEP/CONEP #186.688; CEP/CONEP #626.268).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

204_2018_2198_MOESM1_ESM.pdf (328 kb)
Supplementary material 1 (PDF 328 KB)

References

  1. Abdel-Rahman SZ, el-Zein RA, Anwar WA, Au WW (1996) A multiplex PCR procedure for polymorphic analysis of GSTM1 and GSTT1 genes in population studies. Cancer Lett 107(2):229–233CrossRefPubMedGoogle Scholar
  2. Andrade FG, Furtado-Silva JM, Goncalves BA et al (2014) RAS mutations in early age leukaemia modulated by NQO1 rs1800566 (C609T) are associated with second-hand smoking exposures. BMC Cancer 14:133.  https://doi.org/10.1186/1471-2407-14-133 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andrade FG, Noronha EP, Brisson GD et al (2016) Molecular characterization of pediatric acute myeloid leukemia: results of a multicentric study in Brazil. Arch Med Res 47(8):656–667.  https://doi.org/10.1016/j.arcmed.2016.11.015 CrossRefPubMedGoogle Scholar
  4. Aydin-Sayitoglu M, Hatirnaz O, Erensoy N, Ozbek U (2006) Role of CYP2D6, CYP1A1, CYP2E1, GSTT1, and GSTM1 genes in the susceptibility to acute leukemias. Am J Hematol 81(3):162–170.  https://doi.org/10.1002/ajh.20434 CrossRefPubMedGoogle Scholar
  5. Balta G, Yuksek N, Ozyurek E et al (2003) Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes in childhood acute leukemia. Am J Hematol 73(3):154–160.  https://doi.org/10.1002/ajh.10339 CrossRefPubMedGoogle Scholar
  6. Bolufer P, Collado M, Barragan E et al (2007) The potential effect of gender in combination with common genetic polymorphisms of drug-metabolizing enzymes on the risk of developing acute leukemia. Haematologica 92(3):308–314CrossRefPubMedGoogle Scholar
  7. Bonaventure A, Goujon-Bellec S, Rudant J et al (2012) Maternal smoking during pregnancy, genetic polymorphisms of metabolic enzymes, and childhood acute leukemia: the ESCALE study (SFCE). CCC 23(2):329–345.  https://doi.org/10.1007/s10552-011-9882-9 PubMedCrossRefGoogle Scholar
  8. Brisson GD, Alves LR, Pombo-de-Oliveira MS (2015) Genetic susceptibility in childhood acute leukaemias: a systematic review. Ecancermedicalscience 9:539.  https://doi.org/10.3332/ecancer.2015.539 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brosselin P, Rudant J, Orsi L et al (2009) Acute childhood leukaemia and residence next to petrol stations and automotive repair garages: the ESCALE study (SFCE). Occup Environ Med 66(9):598–606.  https://doi.org/10.1136/oem.2008.042432 CrossRefPubMedGoogle Scholar
  10. Clavel J, Bellec S, Rebouissou S et al (2005) Childhood leukaemia, polymorphisms of metabolism enzyme genes, and interactions with maternal tobacco, coffee and alcohol consumption during pregnancy. Eur J Cancer Prev 14(6):531–540CrossRefPubMedGoogle Scholar
  11. Davies SM, Robison LL, Buckley JD, Radloff GA, Ross JA, Perentesis JP (2000) Glutathione S-transferase polymorphisms in children with myeloid leukemia: a Children’s Cancer Group study. Cancer Epidemiol Biomark Prev 9(6):563–566Google Scholar
  12. de Souza Reis R, de Camargo B, de Oliveira Santos M, de Oliveira JM, Azevedo Silva F, Pombo-de-Oliveira MS (2011) Childhood leukemia incidence in Brazil according to different geographical regions. Pediatr Blood Cancer 56(1):58–64.  https://doi.org/10.1002/pbc.22736 CrossRefPubMedGoogle Scholar
  13. de Aguiar Goncalves BA, Vasconcelos GM, Thuler LC et al (2012) NQO1 rs1800566 (C609T), PON1 rs662 (Q192R), and PON1 rs854560 (L55M) polymorphisms segregate the risk of childhood acute leukemias according to age range distribution. CCC 23(11):1811–1819.  https://doi.org/10.1007/s10552-012-0060-5 PubMedCrossRefGoogle Scholar
  14. de Souza Reis R, de Oliveira Santos M, de Camargo B, Oliveira JF, Thuler LC, Pombo-de-Oliveira MS (2016) Early childhood leukemia incidence trends in Brazil. Pediatr Hematol Oncol 33(2):83–93.  https://doi.org/10.3109/08880018.2015.1130763 CrossRefGoogle Scholar
  15. de Souza Reis R, de Paula Silva N, de Oliveira Santos M et al (2017) Mother and child characteristics at birth and early age leukemia: a case-cohort population-based study. Jornal de Pediatra 93:610–618CrossRefGoogle Scholar
  16. Decker M, Arand M, Cronin A (2009) Mammalian epoxide hydrolases in xenobiotic metabolism and signalling. Arch Toxicol 83(4):297–318.  https://doi.org/10.1007/s00204-009-0416-0 CrossRefPubMedGoogle Scholar
  17. Dougherty D, Garte S, Barchowsky A, Zmuda J, Taioli E (2008) NQO1, MPO, CYP2E1, GSTT1 and GSTM1 polymorphisms and biological effects of benzene exposure—a literature review. Toxicol Lett 182(1–3):7–17.  https://doi.org/10.1016/j.toxlet.2008.09.008 CrossRefPubMedGoogle Scholar
  18. Eguchi-Ishimae M, Eguchi M, Ishii E et al (2005) The association of a distinctive allele of NAD(P)H:quinone oxidoreductase with pediatric acute lymphoblastic leukemias with MLL fusion genes in Japan. Haematologica 90(11):1511–1515PubMedGoogle Scholar
  19. Ferreira JD, Couto AC, Pombo-de-Oliveira MS, Koifman S (2012) Pregnancy, maternal tobacco smoking, and early age leukemia in Brazil. Front Oncol 2:151.  https://doi.org/10.3389/fonc.2012.00151 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ferreira JD, Couto AC, Pombo-de-Oliveira MS, Koifman S (2013) In utero pesticide exposure and leukemia in Brazilian children < 2 years of age. Environ Health Perspect 121(2):269–275.  https://doi.org/10.1289/ehp.1103942 PubMedCrossRefGoogle Scholar
  21. Ford AM, Ridge SA, Cabrera ME et al (1993) In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 363(6427):358–360.  https://doi.org/10.1038/363358a0 CrossRefPubMedGoogle Scholar
  22. Gra OA, Glotov AS, Kozhekbaeva Z, Makarova OV, Nasedkina TV (2008) [Genetic polymorphism in GST, NAT2, and MTRR and susceptibility to childhood acute leukemia]. Molekuliarnaia biologiia 42(2):214–225PubMedGoogle Scholar
  23. Greaves MF, Wiemels J (2003) Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 3(9):639–649.  https://doi.org/10.1038/nrc1164 CrossRefPubMedGoogle Scholar
  24. Hassett C, Aicher L, Sidhu JS, Omiecinski CJ (1994) Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet 3(3):421–428CrossRefPubMedPubMedCentralGoogle Scholar
  25. Heck JE, Park AS, Qiu J, Cockburn M, Ritz B (2014) Risk of leukemia in relation to exposure to ambient air toxics in pregnancy and early childhood. Int J Hyg Environ Health 217(6):662–668.  https://doi.org/10.1016/j.ijheh.2013.12.003 CrossRefPubMedGoogle Scholar
  26. Howlader N, Noone AM, Krapcho M et al (2017) SEER cancer statistics review, 1975–2014. National Cancer Institute, BethesdaGoogle Scholar
  27. IARC (2012) Chemical agents and related occupations IARC monographs on the evaluation of carcinogenic risks to humans, vol 100F. International Agency for Research on Cancer, LyonGoogle Scholar
  28. Kim SG (1995) Expression of rat microsomal epoxide hydrolase during pregnancy. Biochem Pharmacol 50(10):1593–1597CrossRefPubMedGoogle Scholar
  29. Kim S, Vermeulen R, Waidyanatha S et al (2006) Modeling human metabolism of benzene following occupational and environmental exposures. Cancer Epidemiol Biomark Prev 15(11):2246–2252.  https://doi.org/10.1158/1055-9965.EPI-06-0262 CrossRefGoogle Scholar
  30. Kiyohara C, Yoshimasu K, Takayama K, Nakanishi Y (2006) EPHX1 polymorphisms and the risk of lung cancer: a HuGE review. Epidemiology 17(1):89–99CrossRefPubMedGoogle Scholar
  31. Langmuir PB, Aplenc R, Lange BJ (2001) Acute myeloid leukaemia in children. Best Pract Res Clin Haematol 14(1):77–93.  https://doi.org/10.1053/beha.2000.0117 CrossRefPubMedGoogle Scholar
  32. Lindsey RH, Bender RP, Osheroff N (2005) Stimulation of topoisomerase II-mediated DNA cleavage by benzene metabolites. Chem Biol Interact 153–154:197–205.  https://doi.org/10.1016/j.cbi.2005.03.035 CrossRefPubMedGoogle Scholar
  33. Lopes BA, Emerenciano M, Goncalves BA, Vieira TM, Rossini A, Pombo-de-Oliveira MS (2015) Polymorphisms in CYP1B1, CYP3A5, GSTT1, and SULT1A1 are associated with early age acute leukemia. PloS One 10(5):e0127308.  https://doi.org/10.1371/journal.pone.0127308 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Metayer C, Petridou E, Arangure JM et al (2016) Parental tobacco smoking and acute myeloid leukemia: the childhood leukemia international consortium. Am J Epidemiol 184(4):261–73.  https://doi.org/10.1093/aje/kww018 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Meyer C, Hofmann J, Burmeister T et al (2013) The MLL recombinome of acute leukemias in 2013. Leukemia 27(11):2165–2176.  https://doi.org/10.1038/leu.2013.135 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mittal RD, Srivastava DL (2007) Cytochrome P4501A1 and microsomal epoxide hydrolase gene polymorphisms: gene-environment interaction and risk of prostate cancer. DNA Cell Biol 26(11):791–798.  https://doi.org/10.1089/dna.2007.0630 CrossRefPubMedGoogle Scholar
  37. O’Shaughnessy PJ, Monteiro A, Bhattacharya S, Fowler PA (2011) Maternal smoking and fetal sex significantly affect metabolic enzyme expression in the human fetal liver. J Clin Endocrinol Metab 96(9):2851–2860CrossRefPubMedGoogle Scholar
  38. Omiecinski CJ, Aicher L, Swenson L (1994) Developmental expression of human microsomal epoxide hydrolase. J Pharmacol Exp Ther 269(1):417–423PubMedGoogle Scholar
  39. Pelkonen O, Terron A, Hernandez AF, Menendez P, Bennekou SH (2017) Chemical exposure and infant leukaemia: development of an adverse outcome pathway (AOP) for aetiology and risk assessment research. Arch Toxicol 91(8):2763–2780.  https://doi.org/10.1007/s00204-017-1986-x CrossRefPubMedGoogle Scholar
  40. Pena SD, Di Pietro G, Fuchshuber-Moraes M et al (2011) The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PloS One 6(2):e17063.  https://doi.org/10.1371/journal.pone.0017063 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Puumala SE, Ross JA, Aplenc R, Spector LG (2013) Epidemiology of childhood acute myeloid leukemia. Pediatr Blood Cancer 60(5):728–733.  https://doi.org/10.1002/pbc.24464 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sirma S, Agaoglu L, Yildiz I et al (2004) NAD(P)H:quinone oxidoreductase 1 null genotype is not associated with pediatric de novo acute leukemia. Pediatric Blood Cancer 43(5):568–70.  https://doi.org/10.1002/pbc.20098 CrossRefPubMedGoogle Scholar
  43. Smith MT (2010) Advances in understanding benzene health effects and susceptibility. Annu Rev Public Health 31:133–148 2 p following 148.  https://doi.org/10.1146/annurev.publhealth.012809.103646
  44. Swerdlow SH, Campo E, Harris NL et al (2008) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. International Agency for Research on Cancer, LyonGoogle Scholar
  45. Ulrich CM, Bigler J, Whitton JA, Bostick R, Fosdick L, Potter JD (2001) Epoxide hydrolase Tyr113His polymorphism is associated with elevated risk of colorectal polyps in the presence of smoking and high meat intake. Cancer Epidemiol Biomark Prev 10(8):875–882Google Scholar
  46. Wiemels JL, Xiao Z, Buffler PA et al (2002) In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood 99(10):3801–3805CrossRefPubMedGoogle Scholar
  47. Zhang L, Eastmond DA, Smith MT (2002) The nature of chromosomal aberrations detected in humans exposed to benzene. Crit Rev Toxicol 32(1):1–42.  https://doi.org/10.1080/20024091064165 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gisele Dallapicola Brisson
    • 1
  • Bruno de Almeida Lopes
    • 1
  • Francianne Gomes Andrade
    • 1
  • Filipe Vicente dos Santos Bueno
    • 1
  • Ingrid Sardou-Cezar
    • 1
  • Bruno Alves de Aguiar Gonçalves
    • 1
  • Eugênia Terra-Granado
    • 1
  • Flávio Henrique Paraguassú-Braga
    • 2
  • Maria S. Pombo-de-Oliveira
    • 1
  1. 1.Pediatric Hematology-Oncology Research Program, Research CenterInstituto Nacional de Câncer (INCA)Rio de JaneiroBrazil
  2. 2.Centro de Processamento e Armazenamento Celular, Banco de Sangue de Cordão Umbilical, Centro de Transplante e Terapia CelularInstituto Nacional de Câncer (INCA)Rio de JaneiroBrazil

Personalised recommendations