Zafaria cholistanensis gen. nov. sp. nov., a moderately thermotolerant and halotolerant actinobacterium isolated from Cholistan desert soil of Pakistan

Abstract

A Gram-staining positive, non-spore forming, non-pigmented and non-motile bacterium, designated strain NCCP-1664T, was isolated from Cholistan desert, Pakistan. Cells of strain NCCP-1664T were strictly aerobic, catalase positive and oxidase negative with a rod to coccus growth cycle and can grow at pH 6.0–9.0 (optimum pH 7–8) at 28–45 °C (optimum 37 °C) and could tolerate 0–16% NaCl (optimum 2%). Phylogenetic analyses based on 16S rRNA gene sequence revealed that strain NCCP-1664T belongs to the family Micrococcaceae and was related to members of the genus Arthrobacter having highest sequence similarities with Arthrobacter ginkgonis (98.9%), A. halodurans (97.7%) and A. oryzae (97.1%) and less than 97% with other related taxa. DNA–DNA relatedness values of strain NCCP-1664T with above mentioned type strains were found to be less than 54%, whereas digital DDH and average nucleotide identity (ANI) values with A. oryzae were 20.9 and of 74.3%, respectively. DNA G + C content of strain NCCP-1664T was 70.0 mol%. Chemotaxonomic data of strain NCCP-1664T showed the peptidoglycan type as A3α l-Lys–l -Ala; menaquinones as MK-9(H2) (67%), MK-8(H2) (32%) and MK-7(H2) (1%), major fatty acids as anteiso -C15:0 (51.2%), anteiso-C17:0 (9.6%) and C18:1ω9c (6.9%) and polar lipids profile comprising of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, digalactosyldiacylglycerol, small amounts of monogalactosyldiacylglycerol, trimannosyldiacylglycerol and three unidentified lipids. The phylogenomic analyses along with chemotaxonomic data, physiological, biochemical characteristics allowed to describe it as representative of a novel genus, for which the name Zafaria cholistanensis gen. nov. sp. nov. is proposed with the type strain NCCP-1664T (= DSM 29936T = KCTC 39549T).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J (1996) Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47(1):39–52. https://doi.org/10.1016/0168-1656(96)01376-4

    CAS  Article  Google Scholar 

  2. Amin A, Ahmed I, Habib N et al (2016) Microvirga pakistanensis sp. nov., a novel bacterium isolated from desert soil of Cholistan. Pakistan Arch Microbiol 198:933–939. https://doi.org/10.1007/s00203-016-1251-3

    CAS  Article  PubMed  Google Scholar 

  3. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Zagnitko O (2008) The RAST Server: rapid annotations usingsubsystems technology. BMC genomics 9(1):1–15

    Article  Google Scholar 

  4. Busse HJ (2016) Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol 66:9–37. https://doi.org/10.1099/ijsem.0.000702

    CAS  Article  PubMed  Google Scholar 

  5. Chen YG, Tang SK, Zhang Y et al (2009) Arthrobacter halodurans sp. nov., a new halotolerant bacterium isolated from sea water. Antonie Van Leeuwenhoek 96:63–70. https://doi.org/10.1007/s10482-009-9336-5

    CAS  Article  PubMed  Google Scholar 

  6. Cheng J, Zhang MY, Zhao JC et al (2016) Arthrobacter ginkgonis sp. nov., a novel actinomycete isolated from rhizosphere of Ginkgo biloba L. Int J Syst Evol Microbiol. 67(2):319–324. https://doi.org/10.1099/ijsem.0.001623

    CAS  Article  Google Scholar 

  7. Christensen H, Angen O, Mutters R et al (2000) DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102. https://doi.org/10.1099/00207713-50-3-1095

    CAS  Article  PubMed  Google Scholar 

  8. Delcher AL, Bratke KA, Powers EC et al (2007) Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 23:673–679. https://doi.org/10.1093/bioinformatics/btm009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229. https://doi.org/10.1099/00207713-39-3-224

    Article  Google Scholar 

  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791. https://doi.org/10.2307/2408678

    Article  Google Scholar 

  11. Ganzert L, Bajerski F, Mangelsdorf K et al (2011) Arthrobacter livingstonensis sp. nov. and Arthrobacter cryotolerans sp. nov., salt-tolerant and psychrotolerant species from antarctic soil. Int J Syst Evol Microbiol 61:979–984. https://doi.org/10.1099/ijs.0.021022-0

    CAS  Article  PubMed  Google Scholar 

  12. Goris J, Suzuki K-i, Vos PD et al (1998) Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153. https://doi.org/10.1139/w98-118

    CAS  Article  Google Scholar 

  13. Kageyama A, Morisaki K, Omura S et al (2008) Arthrobacter oryzae sp. nov. and Arthrobacter humicola sp. nov. Int J Syst Evol Microbiol 58:53–56. https://doi.org/10.1099/ijs.0.64875-0

    CAS  Article  PubMed  Google Scholar 

  14. Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. https://doi.org/10.1099/Ijs.0.038075-0

    CAS  Article  PubMed  Google Scholar 

  15. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703. https://doi.org/10.1038/178703a0

    CAS  Article  PubMed  Google Scholar 

  17. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    CAS  Article  Google Scholar 

  18. Li WJ, Xu P, Shumann P et al (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428. https://doi.org/10.1099/ijs.0.64749-0

    Article  Google Scholar 

  19. Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Giga Sci 1:18

    Article  Google Scholar 

  20. Marmur J (1963) A procedure for the isolation of deoxyribonucleic acid from microorganisms. Method Enzymol 6:726–738. https://doi.org/10.1016/0076-6879(63)06240-6

    CAS  Article  Google Scholar 

  21. Meier-Kolthoff JP, Auch AF, Klenk H-P et al (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformat 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  22. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic-acid by high-performance liquid-chromatography. Int J Syst Bacteriol 39:159–167. https://doi.org/10.1099/00207713-39-2-159

    CAS  Article  Google Scholar 

  23. Na S-I, Kim YO, Yoon S-H et al (2018) UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285. https://doi.org/10.1007/s12275-018-8014-6

    CAS  Article  PubMed  Google Scholar 

  24. Osorio CR, Barja JL, Hutson RA et al (1999) Note: Arthrobacter rhombi sp. nov., isolated from Greenland halibut (Reinhardtius hippoglossoides). Int J Syst Evol Microbiol 49:1217–1220. https://doi.org/10.1099/00207713-49-3-1217

    CAS  Article  Google Scholar 

  25. Pitcher D, Saunders N, Owen R (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156. https://doi.org/10.1111/j.1472-765X.1989.tb00262.x

    CAS  Article  Google Scholar 

  26. Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    CAS  Article  Google Scholar 

  27. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. In: MIDI Technical Note 101. MIDI Inc, Newark, DE

  28. Schumann P (2011) Peptidoglycan structure. In: Methods in microbiology. Vol. 38 Academic Press, pp 101–129

  29. Shirling E, Gottlieb D (1966) Method for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340. https://doi.org/10.1099/00207713-16-3-313

    Article  Google Scholar 

  30. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849. https://doi.org/10.1099/00207713-44-4-846

    CAS  Article  Google Scholar 

  31. Stolz A, Busse H-J, Kaempfer P (2007) Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576. https://doi.org/10.1099/ijs.0.64761-0

    CAS  Article  PubMed  Google Scholar 

  32. Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. https://doi.org/10.1093/nar/25.24.4876

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Tindall B (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130. https://doi.org/10.1016/S0723-2020(11)80158-X

    CAS  Article  Google Scholar 

  34. Wayne LG, Brenner DJ, Colwell RR et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464. https://doi.org/10.1099/00207713-37-4-463

    Article  Google Scholar 

  35. Xu P, Li WJ, Tang SK et al (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’isolated from China. Int J Syst Evol Microbiol 55:1149–1153. https://doi.org/10.1099/ijs.0.63407-0

    CAS  Article  PubMed  Google Scholar 

  36. Yoon S-H, Ha S-m, Lim J et al (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110(10):1281–1286. https://doi.org/10.1007/s10482-017-0844-4

    CAS  Article  PubMed  Google Scholar 

  37. Zhang J, Ma Y, Yu H (2012) Arthrobacter cupressi sp. nov., an actinomycete isolated from the rhizosphere soil of Cupressus sempervirens. Int J Syst Evol Microbiol 62:2731–2736. https://doi.org/10.1099/ijs.0.036889-0

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported by National Natural Science Foundation of China (No: 32061143043), the Science & Technology Basic Resources Investigation Program of China (No. 2017FY100300), Xinjiang Uygur Autonomous Region regional coordinated innovation project (Shanghai Cooperation Organization Science and Technology Partnership Program, No. 2017E01031) and China Biodiversity Observation Networks (Sino BON).

Author information

Affiliations

Authors

Contributions

Conceptualization and Methodology, AA, IA and WJL; Supervision, IA and WJL; Formal analysis, AA, IUK and LS; Data curation, AA, IA, LS and WJL; Peptidoglycan analysis in lab by HJB, whereas peptidoglycan, quinone and fatty acid profile analyses in lab by PS. Data analysis, AA, NK, AA, IUK and IA; Project administration, IA and WJL; Funding acquisition and Resources, WJL; Writing – original draft, AA, IA and NK; Writing – review & editing, IA, PS, HJB, NK, IUK, AA and WJL.

Corresponding authors

Correspondence to Iftikhar Ahmed or Wen-Jun Li.

Ethics declarations

Conflict of interest

According to the ethical statement/conflict of interest, we stated that it is the original work of the authors. The authors declare that they have no direct or indirect conflict of interest. Moreover, this article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The DDBJ/EMBL/GenBank accession number for the 16S rRNA gene sequence of Zafaria cholistanensis NCCP-1664T is LC065376. The bio-project, bio-sample and whole-genome sequences of strain NCCP-1664T have been deposited to DDBJ/EMBL/GenBank under the accession numbers PRJDB8509, SAMD00178857 and BKDJ01000000.

Communicated by Erko Stackebrandt.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amin, A., Ahmed, I., Khalid, N. et al. Zafaria cholistanensis gen. nov. sp. nov., a moderately thermotolerant and halotolerant actinobacterium isolated from Cholistan desert soil of Pakistan. Arch Microbiol (2021). https://doi.org/10.1007/s00203-020-02176-4

Download citation

Keywords

  • Cholistan desert
  • Peptidoglycan type A3α
  • Thermotolerant
  • Halotolerant