Klebsiella pneumoniae carbapenemase (KPC) in urinary infection isolates

Abstract

Recently, emergence of carbapenem-resistance, in particular due to Klebsiella pneumoniae carbapenemase (KPC), was observed among K. pneumoniae causing urinary tract infections in Croatia. The aim of the study was to characterize, antimicrobial susceptibility, carbapenem resistance, virulence traits and plasmid types of the urinary KPC positive isolates of K. pneumoniae. The antimicrobial susceptibility to a wide range of antibiotics was determined by broth microdilution method. The transferability of meropenem resistance was determined by conjugation (broth mating method) employing Escherichia coli J63 strain resistant to sodium azide. Genes encoding broad and extended-spectrum β-lactamases, plasmid-mediated AmpC β-lactamases, group A and B carbapenemases, and carbapenem hydrolyzing oxacillinases (blaOXA-48like), respectively, were determined by Polymerase chain reaction (PCR). In total 30 KPC-positive K. pneumoniae urinary isolates collected from different regions of Croatia were analysed. The isolates were uniformly resistant to all tested antibiotics except for variable susceptibility to gentamicin, sulphamethoxazole/trimethoprim, and colistin, respectively. Four isolates were resistant to colistin with MICs values ranging from 4 to 16 mg/L. All tested isolates were susceptible to ceftazidime/avibactam. Sixteen isolates transferred meropenem resistance to E. coli recipient strain by conjugation. Other resistance markers were not co-transferred. PCR was positive for blaKPC and blaSHV genes in all isolates whereas 13 isolates tested positive also for blaTEM genes. PCR based replicon typing (PBRT) revealed the presence of FIIs in 13 and FIA plasmid in two strains. The study showed dissemination of KPC-producing K. pneumoniae in urinary isolates, posing a new epidemiological and treatment challenge. Sulphamethoxazole/trimethoprim, colistin, and ceftazidime/avibactam remain so far, as the therapeutic options.

This is a preview of subscription content, access via your institution.

References

  1. Arlet G, Brami G, Decre D, Flippo A, Gaillot O, Lagrange PH et al (1995) Molecular characterization by PCR restriction fragment polymorphism of TEM β-lactamases. FEMS Microbiol Lett 134:203–208. https://doi.org/10.1111/j.1574-6968.1995.tb07938.x

    CAS  Article  PubMed  Google Scholar 

  2. Avgoulea K, Di Pilato V, Zarkotou O, Sennati S, Politi L, Cannatelli A et al (2018) Characterization of extensively drug-resistant or pandrug resistant sequence type 147 and 101 OXA-48-producing Klebsiella pneumoniae causing bloodstream infections in patients in intensive care unit. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.02457-17

    Article  PubMed  PubMed Central  Google Scholar 

  3. A Baraniak, A Grabowska, R Izdebski, J Fiett, M Herda, K Bojarska et al. KPC-PL Study Group (2011) Molecular characteristics of KPC-producing Enterobacteriaceae at the early stage of their dissemination in Poland, 2008–2009. Antimicrob Agents Chemother 55(12):5493–5499. https://doi.org/10.1128/AAC.05118-11

    CAS  Article  Google Scholar 

  4. Bedenić B, Mazzariol A, Plečko V, Bošnjak Z, Barl P, Vraneš J et al (2012) First report of KPC-producing Klebsiella pneumoniae in Croatia. J Chemother 24(4):237–239. https://doi.org/10.1179/1973947812Y.0000000017

    Article  PubMed  Google Scholar 

  5. Bedenić B, Zujić Atalić V, Jajić I, Đjuras-Cuculić B, Godič-Torkar K, Vraneš J et al (2015) Clonal spread of Klebsiella pneumoniae producing KPC-2 β-lactamase in Croatian University Hospital. J Chemother 27(4):241–245. https://doi.org/10.1179/1973947814Y.0000000191

    Article  PubMed  Google Scholar 

  6. Bedenić B, Sardelić S, Luxner J, Bošnjak Z, Varda-Brkić D, Lukić-Grlić A et al (2016) Molecular characterization of class B carbapenemases in advanced stage of dissemination and emergence of class D carbapenemases in Enterobacteriaceae from Croatia. Infect Genetic Evol 43(43):74–82. https://doi.org/10.1016/meegid.2016.05.011

    Article  Google Scholar 

  7. Bedenić B, Slade M, Žele-Starčević L, Sardelić S, Vranić-Ladavac M, Benčić A et al (2018) Epidemic spread of OXA-48 β-lactamase in Croatia. J Med Microbiol 67(8):1031–1034. https://doi.org/10.1099/jmm.0.000777

    CAS  Article  PubMed  Google Scholar 

  8. Bevivino A, Dalmastri C, Tabacchioni S, Chirarinni L, Belli ML, Piana S et al (2002) Burkholderia cepacia complex bacteria from clinical and environmental sources in Ital: genomorvar status and distribution of traits related to virulence and transmissibility. J Clin Microbiol 40(3):846–851

    Article  Google Scholar 

  9. Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L, Segre JA, Westblade LF (2018) Carbapenemase-producing organisms: a global scourge. Clin Infect Dis. https://doi.org/10.1093/cid/cix893

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cannateli A, Giani T, D’Andrea MM, Di Pilato V, Arena F, Conte V et al (2014) MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrob Agents Chemother 58(10):5696–5703. https://doi.org/10.1128/AAC.03110-14

    CAS  Article  Google Scholar 

  11. Canton R, Akova M, Carmeli Y, Giske CG, Glupczynski Y et al (2012) The European Network on carbapenemases, Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 18:413–431

    CAS  Article  Google Scholar 

  12. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63(3):219–228. https://doi.org/10.1016/j.mimet.2005.03.018

    CAS  Article  PubMed  Google Scholar 

  13. Carattoli A, Sieffert S, Schwendener S, Perreten V, Endimiani A (2015) Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PLoS ONE. https://doi.org/10.1371/journal.pone.0123063

    Article  PubMed  PubMed Central  Google Scholar 

  14. Clinical and Laboratory Standards Institute (2018) Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. CLSI supplement. M100. Wayne, PA: CLSI

  15. Coudron PE (2005) Inhibitor based methods for detection of plasmid-mediated AmpC β-Lactamase in Klebsiella spp Escherichia coli, and Proteus mirabilis. J Clin Microbiol 43(8):4163–4167. https://doi.org/10.1128/JCM.43.8.4163-4167.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Elwell LP, Falkow S (1986) The characterization of R plasmids and the detection of plasmid-specified genes. In: Lorian V (ed) Antibiotics in laboratory medicine, 2nd edn. Williams and Wilkins, Baltimore MD, pp 683–721

    Google Scholar 

  17. European Committee for Antimicrobial Susceptibility Testing (2019) Breakpoint Tables for interpreting MICs and zone diamaters. Version 9.0. Available at https://www.eucast.org

  18. Giani T, Pini B, Arena F, Conte V, Bracco S, Migliavacca R, Pantosti A, Luzzaro F, Rossolini GM, The AMLI-CRE Survey Participants (2013) Epidemic diffusion of KPC-carbapenemase-producing Klebsiella pneumoniae in Italy: results of the first countrywide survey, 15 May to 30 June 2011. Euro Surveillance. https://doi.org/10.2807/ese.18.22.20489-en

    Article  PubMed  Google Scholar 

  19. Huang TD, Bogaerts P, Berhin M, Hoebeke M, Bauraing C, Glupczyinski Y et al (2015) Increasing proportion of carbapenemase-producing Enterobacteriaceae and emergence of MCR-I producer through a multicenter study among hospital based and private laboratories in Belgium from September to November 2015. Euro Surveill. https://doi.org/10.2807/1560-7917.ES.2017.22.19.30530

    Article  Google Scholar 

  20. Jarlier V, Nicolas MH, Fournier G, Philippon A (1988) Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 10(4):867–878

    CAS  Article  Google Scholar 

  21. Jelić M, Butić I, Plečko V, Cipriš I, Jajić I, Bejuk D et al (2016) (2016) KPC-producing Klebsiella pneumoniae isolates in Croatia: a nationwide survey. Microb Drug Resist 22(8):662–667. https://doi.org/10.1089/mdr.2015.0150

    CAS  Article  PubMed  Google Scholar 

  22. Kim SK, Hong SG, Moland ES, Thomson KS (2007) Convenient test using combination of chelating agents for detection of metallo-β-lactamases in clinical laboratory. J Clin Microbiol 45(9):2798–2801. https://doi.org/10.1128/JCM.02486-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Krilanović M, Tomić-Paradžik M, Meštrović T, Beader N, Herljević Z, Conzemius R et al (2020) Extended-spectrum beta-lactamases and plasmid diversity in urinary isolates of Escherichia coli in Croatia: a nation-wide, multicentric, retrospective study. Folia Microbiol. https://doi.org/10.1007/s12223-019-00769-1

    Article  Google Scholar 

  24. Liu Liu YY, Wang Y, Walsh T, Yi LX, Zhang R, Spencer J et al (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-I in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 6(2):161–168. https://doi.org/10.1016/S1473-3099(15)00424-7

    CAS  Article  Google Scholar 

  25. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG et al (2012) (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    CAS  Article  Google Scholar 

  26. Mammina C, Bonura C, Bernardo FD, Aleo A, Fascina T, Sodano C et al (2012) Ongoing spread of colistin-resistant Klebsiella pneumoniae in different wards on an acute general hospital, Italy, June to December 2011. Euro Surveillance. https://doi.org/10.2807/ese.17.33.20248-en

    Article  PubMed  Google Scholar 

  27. Nordmann P, Poirel L (2019) Epidemiology and diagnostics of carbapenem resistance in gram-negative bacteria. Clin Infect Dis. https://doi.org/10.1093/cid/ciz824

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nüesch-Inderbinen MT, Hächler H, Kayser FH (1996) Detection of genes coding for extended-spectrum SHV β-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur J Clin Microbiol Infect Dis 15(5):398–402

    Article  Google Scholar 

  29. Pagani L, Mantengoli E, Migliavacca R, Nucleo E, Pollini S, Spalla M et al (2004) Multifocal detection of multidrug-resistant Pseudomonas aeruginosa producing PER-I extended-spectrum β-lactamase in Northern Italy. J Clin Microbiol 42(6):2523–2529. https://doi.org/10.1128/JCM.42.6.2523-2529.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Pasteran F, Mendez T, Guerriero L, Rapoport M, Corso A (2009) Sensitive screening test for suspected class a carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol 47(6):1631–1639. https://doi.org/10.1128/JCM.00130-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Perez-Perez FJ, Hanson ND (2002) Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40(6):2153–2162. https://doi.org/10.1128/JCM.40.6.2153-2162.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Petrosillo N, Vranić-Ladavac M, Feudi C, Villa L, Fortini D, Barišić N et al (2015) Spread of Enterobacter cloacae carrying blaNDM-1, blaCTX-M-15, blaSHV-12 and plasmid-mediated quinolone resistance genes in a surgical intensive care unit in Croatia. J Glob Antimicrob Res 4:44–48. https://doi.org/10.1016/j.jgar.2015.09.008

    Article  Google Scholar 

  33. Poirel L, Walsh TR, Cuveiller V, Nordman P (2011) Multiplex PCR for detection of acquired carbapenemases genes. Diagn Microbiol Infect Dis 70(1):119–123. https://doi.org/10.1016/j.diagmicrobio.2010.12.002

    CAS  Article  PubMed  Google Scholar 

  34. Robicsek A, Jacoby GA, Hooper DC (2006) The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 6(10):629–640. https://doi.org/10.1016/S1473-3099(06)70599-0

    CAS  Article  PubMed  Google Scholar 

  35. Saladin M, Cao VT, Lambert T, Donay JL, Herrmann JL, Ould-Hocine Z et al (2002) Diversity of CTX-M β-lactamases and their promoterregions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol Lett. https://doi.org/10.1111/j.1574-6968.2002.tb11126.x

    Article  PubMed  Google Scholar 

  36. Schiller NL, Hatch RA (1983) The serum sensitivity, colony morphology, serogroup specificity, and outer membrane protein of Pseudomonas aeruginosa strains isolated from several clinical sites. Diagn Microbiol Infect Dis 1:145–147

    CAS  Article  Google Scholar 

  37. Van Duin D, Doi Y (2017) The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 8(4):460–469. https://doi.org/10.1080/21505594.2016.1222343

    CAS  Article  PubMed  Google Scholar 

  38. Vargas JM, Mochi MP, Nuñez JM, Cáceres M, Mochi S, Del Campo MR, Jure MA (2019) Virulence factors and clinical patterns of multiple-clone hypermucoviscous KPC-2 producing K. pneumonia. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e01829

    Article  PubMed  PubMed Central  Google Scholar 

  39. Woodford N, Ward ME, Kaufmann ME, Turton J, Fagan EJ, James D et al (2004) Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum β-lactamases in the UK. J Antimicrob Chemother 54(4):735–743. https://doi.org/10.1093/jac/dkh424

    CAS  Article  PubMed  Google Scholar 

  40. Woodford N, Fagan EJ, Ellington MJ (2006) Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J Antimicrob Chemother 57(1):154–155. https://doi.org/10.1093/jac/dki412

    CAS  Article  PubMed  Google Scholar 

  41. Yao B, Xiao X, Zhout X, Zhang I (2015) Clinical and molecular characteristics of multi-clone carbapenem-resistant hypervirulent isolates in tertiary hospital in Bejing, China. Int J Infect Dis 37:107–112. https://doi.org/10.1016/j.ijid.2015.06.023

    Article  PubMed  Google Scholar 

  42. Zujić Atalić V, Bedenić B, Kocsis E, Mazzariol A, Sardelić S, Barišić M et al (2014) Diversity of carbapenemases in clinical isolates of Enterobacteriaceae in Croatia-the results of the multicenter study. Clin Microbiol Infect 20(11):O894-903. https://doi.org/10.1111/1469-0691.12635

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Branka Bedenić.

Ethics declarations

Conflict of interest

The authors do not declare any conflict of interest.

Ethical statement

The Ethical permission was not necessary. The study did not involve human or animal subjects. It is in vitro study. Urine samples were collected for purpose of routine diagnostic and informed consent was not necessary.

The part of the results is in shown in European Congress for Clinical Microbiology and Infectious Diseases (ECCMID) 2020 online library (the congress was cancelled).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bedenić, B., Sardelić, S., Bogdanić, M. et al. Klebsiella pneumoniae carbapenemase (KPC) in urinary infection isolates. Arch Microbiol (2021). https://doi.org/10.1007/s00203-020-02161-x

Download citation

Keywords

  • Klebsiella pneumoniae
  • KPC
  • Urinary tract infections
  • Resistance