Searching for mechanisms of action of antimicrobials

Abstract

Although development of antimicrobial resistance by bacteria is a natural phenomenon, the antibiotic resistance crisis is a reality that leads us in a gap of antimicrobial alternatives on therapeutics. Considering this cruel reality and committed to contribute to look for new antibacterial agents, this manuscript presents a review of easy laboratory methods that evaluate the mode of action of compounds, since it is a basic requirement for the discovery and development of new drugs. The literature was screened by searching the keywords “mode of action”, “antibiotic”, “antimicrobial activity”, “inhibition mode”, “method” and “bacteria” in Pubmed, Scopus, Science Direct and BVS in a period of time from 2000 to 2019. This review demonstrates the wide variety of methods that can be employed in research on mechanisms of action of antibacterial substances. Therefore, we compiled different protocols (presented in the supplementary material), available in the literature, with the purpose of facilitating the start of experiments.

This is a preview of subscription content, log in to check access.

Fig. 1

Data availability

All data generated or analysed during this study are included in this published article [and its Supplementary information files].

References

  1. Arias M, Jensen KV, Nguyen LT, Storey DG, Vogel HJ (2015) Hydroxy-tryptophan containing derivatives of tritrpticin: modification of antimicrobial activity and membrane interactions. Biochim Biophys Acta 1848(1):277–288. https://doi.org/10.1016/j.bbamem.2014.08.024

    CAS  Article  PubMed  Google Scholar 

  2. Ashton L, Lau K, Winder C, Goodacre R (2011) Raman spectroscopy: lighting up the future of microbial identification. Future Microbiol 6(9):991–997. https://doi.org/10.2217/fmb.11.89

    CAS  Article  PubMed  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7(72):248–254. https://doi.org/10.1006/abio.1976.9999

    Article  Google Scholar 

  4. Braga KMS, Pimenta VSC, Rodrigues FA, dos Santos TP, de Araújo EG (2016) Citometria De Fluxo: Histórico, Princípios Básicos E Aplicações Em Pesquisa. Enciclopédia Biosfera 13(23):1–26

    Article  Google Scholar 

  5. Carter M, Shieh J (2015) Guide to research techiniques in neuroscience, 2nd edn. Academic Press, Cambridge

    Google Scholar 

  6. Carvalho LAC, Remuzgo C, Perez KR, Machini MT (2015) Hb40–61a: novel analogues help expanding the knowledge on chemistry, properties and candidacidal action of this bovine α-hemoglobin-derived peptide. Biochim et Biophys Acta Biomembr 1848(12):3140–3149. https://doi.org/10.1016/j.bbamem.2015.09.010

    CAS  Article  Google Scholar 

  7. Centers for Disease Control and Prevention, Office of Infectious Disease (2013) Antibiotic resistance threats in the United States, 2013. https://www.cdc.gov/drugresistance/biggest-threats.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fdrugresistance%2Fbiggest_threats.html. Accessed 30 April 2013.

  8. Chan AC, Ager D, Thompson IP (2013) Resolving the mechanism of bacterial inhibition by plant secondary metabolites employing a combination of whole-cell biosensors. J Microbiol Methods 93(3):209–217. https://doi.org/10.1016/j.mimet.2013.03.021

    CAS  Article  PubMed  Google Scholar 

  9. Chehrehasa F, Meedeniya ACB, Dwyer P, Abrahamsen G, Mackay-Sim. (2009) EdU, a new thymidine analogue for labelling proliferating cells in the nervous system. J Neurosci Methods 177(1):122–130. https://doi.org/10.1016/j.jneumeth.2008.10.006

    CAS  Article  PubMed  Google Scholar 

  10. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588. https://doi.org/10.1021/es703238h

    CAS  Article  PubMed  Google Scholar 

  11. Choi IS, Kim CM, Jang SJ (2017) Screening antibiotics using an hoechst 33342 dye-accumulation assay to detect efflux activity in acinetobacter baumannii clinical isolates. Asian Biomed 11(4):371–377. https://doi.org/10.1515/abm-2018-0010

    CAS  Article  Google Scholar 

  12. Datta A et al (2016) Mode of action of a designed antimicrobial peptide: high potency against Cryptococcus neoformans. Biophys J 111(8):1724–1737. https://doi.org/10.1016/j.bpj.2016.08.032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Dhara D et al (2017) New oxadiazole derivatives: synthesis and appraisal of their potential as antimicrobial agents. Lett Drug Des Discov 14(999):1. https://doi.org/10.2174/1570180814666170425160545

    CAS  Article  Google Scholar 

  14. Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanism of action. Biochim Biophys Acta 1462(1–2):11–28. https://doi.org/10.1016/s0005-2736(99)00198-4

    CAS  Article  PubMed  Google Scholar 

  15. Fisher LM, Pan XS (2008) Methods to assay inhibitors of DNA gyrase and topoisomerase IV activities. In: Champney WS (ed) New antibiotic targets: methods in molecular medicine. Humana Press, Totowa, p 142

    Google Scholar 

  16. Gajdács M (2019) The concept of an ideal antibiotic: implications for drug design. Molecules (Basel, Switzerland) 24(5):892. https://doi.org/10.3390/molecules24050892

    CAS  Article  Google Scholar 

  17. Goldstein J et al (2003) Scanning electron microscopy and X-ray microanalysis, 3rd edn. Springer, Berlin

    Google Scholar 

  18. Guido RVC, Andricopulo AD, Oliva G (2010) Drug design, biotechnology and medicinal chemistry: applications to infectious diseases. Estudos Avançados 24(70):81–98. https://doi.org/10.1590/S0103-40142010000300006

    Article  Google Scholar 

  19. Hayat S et al (2018) In vitro antibiofilm and anti-adhesion effects of magnesium oxide nanoparticles against antibiotic resistant bacteria. Microbiol Immunol 6(4):211–220. https://doi.org/10.1111/1348-0421.12580

    CAS  Article  Google Scholar 

  20. Helander IM, Mattila-Sandholm T (2000) Fluorometric assessment of Gram-negative bacterial permeabilization. J Appl Microbiol 88(2):213–219. https://doi.org/10.1046/j.1365-2672.2000.00971.x

    CAS  Article  PubMed  Google Scholar 

  21. Hoerr V, Duggan GE, Zbytnuik L, Poon KK, Große C, Neugebauer U, Methling K, Löffler B, Vogel HJ (2016) Characterization and prediction of the mechanism of action of antibiotics through NMR metabolomics. BMC Microbiol 16:82. https://doi.org/10.1186/s12866-016-0696-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Huang WE, Li M, Jarvis RM, Goodacre R, Banwart SA (2010) Shining light on the microbial world the application of Raman microspectroscopy. Adv Appl Microbiol 70:153–186. https://doi.org/10.1016/S0065-2164(10)70005-8

    CAS  Article  PubMed  Google Scholar 

  23. Inácio ÂS et al (2016) Quaternary ammonium surfactant structure determines selective toxicity towards bacteria: mechanisms of action and clinical implications in antibacterial prophylaxis. J Antimicrob Chemother 71(3):641–654. https://doi.org/10.1093/jac/dkv405

    CAS  Article  PubMed  Google Scholar 

  24. Jayachandran S (2018) Pre-antibiotics era to post-antibiotic era. J Indian Acad Oral Med Radiol 30:100–101. https://doi.org/10.4103/jiaomr.jiaomr_29_18

    Article  Google Scholar 

  25. Jungblut PR (2001) Proteome analysis of bacterial pathogens. Microbes Infect 3(10):831–840. https://doi.org/10.1016/s1286-4579(01)01441-1

    CAS  Article  PubMed  Google Scholar 

  26. Kim JS et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101. https://doi.org/10.1016/j.nano.2006.12.001

    CAS  Article  Google Scholar 

  27. Koopmans T et al (2015) Semisynthetic lipopeptides derived from nisin display antibacterial activity and lipid II binding on par with that of the parent compound. J Am Chem Soc 137(29):9382–9389. https://doi.org/10.1021/jacs.5b04501

    CAS  Article  PubMed  Google Scholar 

  28. Kora AJ, Sashidhar RB (2018) Biogenic silver nanoparticles synthesized with rhamnogalacturonan gum: antibacterial activity, cytotoxicity and its mode of action. Arab J Chem 11(3):313–323. https://doi.org/10.1016/j.arabjc.2014.10.036

    CAS  Article  Google Scholar 

  29. Kraemer GR, Landolo JJ (1990) High-frequency transformation of Staphylococcus aureus by electroporation. Curr Microbiol 21:373–376. https://doi.org/10.1007/BF02199440

    CAS  Article  Google Scholar 

  30. Lengauer T, Rarey M (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6(3):402–406. https://doi.org/10.1016/s0959-440x(96)80061-3

    CAS  Article  PubMed  Google Scholar 

  31. Lennon SV, Martin SJ, Cotter TG (2015) Induction of apoptosis (programmed cell death) in tumour cell lines by widely diverging stimuli. Biochem Soc Trans 18(2):343–345. https://doi.org/10.1042/bst0180343

    Article  Google Scholar 

  32. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli 0157:H7. J Appl Microbiol 107(4):1193–1201. https://doi.org/10.1111/j.1365-2672.2009.04303.x

    CAS  Article  PubMed  Google Scholar 

  33. Michiels JE, Van Den Bergh B, Verstraeten N, Michiels J (2016) Molecular mechanisms and clinical implications of bacterial persistence. Drug Resist Updates 29:76–89. https://doi.org/10.1016/j.drup.2016.10.002

    Article  Google Scholar 

  34. Miles AJ, Wallace BA (2016) Circular dichroism spectroscopy of membrane proteins. Chem Soc Rev 45(18):4859–4872. https://doi.org/10.1039/C5CS00084J

    CAS  Article  PubMed  Google Scholar 

  35. Moreira MAS, Souza ECD, Moraes CAD (2005) Multidrug efflux systems in Gram-negative bacteria. Braz J Microbiol 35(1–2):19–28. https://doi.org/10.1590/S1517-83822004000100003

    Article  Google Scholar 

  36. Muthaiyan A, Silverman JA, Jayaswal RK, Wilkinson BJ (2008) Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization. Antimicrob Agents Chemother 52(3):980–990. https://doi.org/10.1128/AAC.01121-07

    CAS  Article  PubMed  Google Scholar 

  37. Orenga S, James AL, Manafi M, Perry JD, Pincus DH (2009) Enzymatic substrates in microbiology. J Microbiol Methods 79(2):139–155. https://doi.org/10.1016/j.mimet.2009.08.001

    CAS  Article  PubMed  Google Scholar 

  38. Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405(6788):837–846. https://doi.org/10.1038/35015709

    CAS  Article  PubMed  Google Scholar 

  39. Park HS et al (2007) Antistaphylococcal activities of CG400549, a new bacterial enoyl-acyl carrier protein reductase (FabI) inhibitor. J Antimicrob Chemother 60(3):568–574. https://doi.org/10.1093/jac/dkm236

    CAS  Article  PubMed  Google Scholar 

  40. Pinto NCC et al (2017) Antimicrobial Annona muricata L. (soursop) extract targets the cell membranes of Gram-positive and Gram-negative bacteria. Ind Crops 107:332–340. https://doi.org/10.1016/j.indcrop.2017.05.054

    Article  Google Scholar 

  41. Richmond GE, Chua KL, Piddock LJV (2013) Efflux in Acinetobacter baumannii can be determined by measuring accumulation of H33342 (bis-benzamide). J Antimicrob Chemother 68(7):1594–1600. https://doi.org/10.1093/jac/dkt052

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Sengupta S, Chattopadhyay MK, Grossart HP (2013) The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 4:1–13. https://doi.org/10.3389/fmicb.2013.00047

    Article  Google Scholar 

  43. Signoretto C et al (2013) Effects of mushroom and chicory extracts on the shape, physiology and proteome of the cariogenic bacterium Streptococcus mutans. BMC Complement Altern Med 13:117. https://doi.org/10.1186/1472-6882-13-117

    Article  PubMed  PubMed Central  Google Scholar 

  44. Siriyong T et al (2017) Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa. BMC Complement Altern Med 17(1):1–7. https://doi.org/10.1186/s12906-017-1913-y

    CAS  Article  Google Scholar 

  45. Srinivasan B, Tonddast-Navaei S, Roy A, Zhou H, Skolnick J (2019) Chemical space of Escherichia coli dihydrofolate reductase inhibitors: new approaches for discovering novel drugs for old bugs. Med Res Rev 39(2):684–705. https://doi.org/10.1002/med.21538

    Article  PubMed  Google Scholar 

  46. Taylor PW, Stapleton PD, Paul LJ (2002) New ways to treat bacterial infections. Drug Discov Today 7(21):1086–1091. https://doi.org/10.1016/s1359-6446(02)02498-4

    Article  PubMed  Google Scholar 

  47. Tekeli Y et al (2014) Phenolic composition, antioxidant capacity of salvia verticcilata and effect on multidrug resistant bacteria by flow-cytometry. Afr J Tradit Complement Altern Med 11(4):147–152. https://doi.org/10.4314/ajtcam.v11i4.23

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Theuretzbacher U, Outterson K, Engel A et al (2020) The global preclinical antibacterial pipeline. Nat Rev Microbiol 18:275–285. https://doi.org/10.1038/s41579-019-0288-0

    CAS  Article  PubMed  Google Scholar 

  49. Thomas L, Matthias R (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6(3):402–406. https://doi.org/10.1016/S0959-440X(96)80061-3

    Article  Google Scholar 

  50. Turner A, Karube I, Wilson GS (1987) Biosensors: fundamentals and applications, 1st edn. Oxford University Press, Oxford, p 770

    Google Scholar 

  51. Ventola CL (2015) The antibiotic resistance crisis part one: causes and threats. P&T 40(4):278–283 (PMID: 25859123)

    Google Scholar 

  52. World Health Organization, WHO (2017a) Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline, including tuberculosis. World Health Organization, Geneva (2017 (WHO/EMP/IAU/2017.11). Licence: CC BY-NC-SA 3.0 IGO)

    Google Scholar 

  53. World Health Organization, WHO (2017b) Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. World Health Organization, Geneva (2017(WHO/EMP/IAU/2017.12). Licence: CC BY-NC-SA 3.0 IGO)

    Google Scholar 

  54. Worthington RJ, Melander C (2013) Combination approaches to combat multi-drug resistant bacteria. Trends Biotechnol 31(3):177–184. https://doi.org/10.1016/j.tibtech.2012.12.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Xiao ZP et al (2014) Design, synthesis, and evaluation of novel fluoroquinolone-flavonoid hybrids as potent antibiotics against drug-resistant microorganisms. Eur J Med Chem 80:92–100. https://doi.org/10.1016/j.ejmech.2014.04.037

    CAS  Article  PubMed  Google Scholar 

  56. Yarlagadda V, Sarkar P, Manjunath GB, Haldar J (2015) Lipophilic vancomycin aglycon dimer with high activity against vancomycin-resistant bacteria. Bioorg Med Chem Lett 25(23):5477–5480. https://doi.org/10.1016/j.bmcl.2015.10.083

    CAS  Article  PubMed  Google Scholar 

  57. Yung-sharp D, Kumar R (1989) Protocols for the visualization of DNA in electrophoretic gels by a safe and inexpensive alternative to ethidium bromide. Technique 3:183–187

    Google Scholar 

Download references

Acknowledgements

The authors thank the LABINT-UFJF and Bárbara Marques by English revision.

Funding

Not applicable.

Author information

Affiliations

Authors

Contributions

ABP: data extraction, data analysis, wrote the manuscript. RLF: consulted on articles evaluation, proofread the manuscript. ACMA: idea, data analysis, wrote the manuscript, contributed substantially to discussion.

Corresponding author

Correspondence to Ana Carolina Morais Apolônio.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Dr. Djamel DRIDER.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polo, A.B., Fabri, R.L. & Apolônio, A.C.M. Searching for mechanisms of action of antimicrobials. Arch Microbiol (2020). https://doi.org/10.1007/s00203-020-01959-z

Download citation

Keywords

  • Drug screening
  • Antibiotic resistance
  • Drug development
  • Mode of action