Microbiological quality and safety of commercialized thalassotherapy products based on marine mud and algae extracts in Tunisia

Abstract

A total of 15 samples of thalassotherapy products, distributed in Tunisia in their intact and final state of production, was analyzed to determine their microbiological safety status. The result shows the absence of pathogenic bacteria (Staphylococcus aureus, Candida albicans, Salmonella, Pseudomonas aeruginosa and coliforms). The incidence of contamination by Gram-positive Bacilli (mesophelic bacteria, aerobic and anaerobic spore forming bacteria, anaerobic sulphite-reducing bacteria) was found to be higher in products composed by mud and extract of alga. The biochemical and molecular identification of the major contaminant show that Bacilli were the most covered from 75% of the thalassotherapy products. Mineral analysis (organic matter, Fe, Mg, Ca, Na d K, Al, Si and Ti) shows strong composition on Aluminum and Silica. Cytotoxicity study of six thalassotherapy products and three essential oil extracts (Menthol, Clove and Eucalyptus) did not show any cytotoxic effect. Furthermore, antibacterial acitivity of 5 essentila oils, against 30 isolates of the genus Bacillus and 10 reference strains, has been characterized showing an interesting bactericidal potential of the extract of menthol and Eucalyptus.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Amann RI (1995) In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In: Akkermans ADL, Van Elsas JD, De Bruijn FJ (eds) Molecular microbial ecology manual. Springer Netherlands, Dordrecht, pp 331–345

    Google Scholar 

  2. Bachir RG, Benali M (2012) Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichiacoli and Staphylococcusaureus. Asian Pac J Trop Biomed 2:739–742. https://doi.org/10.1016/S2221-1691(12)60220-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Behravan J, Bazzaz F, Malaekeh P (2005) Survey of bacteriological contamination of cosmetic creams in Iran (2000). Int J Dermatol 44:482–485. https://doi.org/10.1111/j.1365-4632.2005.01963.x

    CAS  Article  PubMed  Google Scholar 

  4. Ben-Jacob E, Schochet O, Tenenbaum A, Cohen I, Czirók A, Vicsek T (1994) Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368(6466):46–49

    CAS  Article  Google Scholar 

  5. Bergonzelli GE, Donnicola D, Porta N, Corthésy-Theulaz IE (2003) Essential oils as components of a diet-based approach to management of helicobacter infection|antimicrobial agents and chemotherapy. Antimicrob Agents Chemother 47:3240–3246. https://doi.org/10.1128/AAC.47.10.3240-3246.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Boudabous CA (1978) Taxonomy and ecology of the Bacillus genus isolated from the marine environment. 3rd cycle doctoral thesis in Biochemistry; Microbiology option. University of Provence Aix-Marseille I

  7. Campana R, Scesa C, Patrone V et al (2006) Microbiological study of cosmetic products during their use by consumers: health risk and efficacy of preservative systems. Lett Appl Microbiol 43:301–306. https://doi.org/10.1111/j.1472-765X.2006.01952.x

    CAS  Article  PubMed  Google Scholar 

  8. Cimbiz A, Bayazit V, Hallaceli H, Cavlak U (2005) The effect of combined therapy (spa and physical therapy) on pain in various chronic diseases. Complem Ther Med 13:244–250. https://doi.org/10.1016/j.ctim.2005.08.004

    Article  Google Scholar 

  9. Claudepierre P (2005) Spa therapy for ankylosing spondylitis: still useful? Joint Bone Spine 72:283–285. https://doi.org/10.1016/j.jbspin.2005.01.003

    Article  PubMed  Google Scholar 

  10. Dao H, Lakhani P, Police A et al (2018) Microbial stability of pharmaceutical and cosmetic products. AAPS PharmSciTech 19:60–78. https://doi.org/10.1208/s12249-017-0875-1

    CAS  Article  PubMed  Google Scholar 

  11. De Smet PAGM (2002) Herbal remedies. N Engl J Med 347:2046–2056. https://doi.org/10.1056/NEJMra020398

    Article  PubMed  Google Scholar 

  12. Delgado B, Palop A, Fernández PS, Periago PM (2004) Combined effect of thymol and cymene to control the growth of Bacillus cereus vegetative cells. Eur Food Res Technol 218:188–193. https://doi.org/10.1007/s00217-003-0806-0

    CAS  Article  Google Scholar 

  13. Elansary HO, Yessoufou K, Shokralla S et al (2016) Enhancing mint and basil oil composition and antibacterial activity using seaweed extracts. Ind Crops Prod 92:50–56. https://doi.org/10.1016/j.indcrop.2016.07.048

    CAS  Article  Google Scholar 

  14. Fernández Freire P, Labrador V, Pérez Martín JM, Hazen MJ (2005) Cytotoxic effects in mammalian Vero cells exposed to pentachlorophenol. Toxicology 210:37–44. https://doi.org/10.1016/j.tox.2005.01.009

    CAS  Article  PubMed  Google Scholar 

  15. Goldenberger D, Perschil I, Ritzler M, Altwegg M (1995) A simple “universal” DNA extraction procedure using SDS and proteinase K is compatible with direct PCR amplification. PCR Methods Appl 4:368–370. https://doi.org/10.1101/gr.4.6.368

    CAS  Article  PubMed  Google Scholar 

  16. Gordon RE (1973) The genus Bacillus. Agricultural Research Service, U.S. Dept. of Agriculture : for sale by the Supt. of Docs., U.S. Govt. Print. Off

  17. Kaewtapee C, Burbach K, Tomforde G et al (2017) Effect of Bacillus subtilis and Bacillus licheniformis supplementation in diets with low- and high-protein content on ileal crude protein and amino acid digestibility and intestinal microbiota composition of growing pigs. J Anim Sci Biotechnol 8:37. https://doi.org/10.1186/s40104-017-0168-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Kiuru P, D’Auria MV, Muller CD et al (2014) Exploring marine resources for bioactive compounds. Planta Med 80:1234–1246. https://doi.org/10.1055/s-0034-1383001

    CAS  Article  PubMed  Google Scholar 

  19. Kubaszewski Ł, Zioła-Frankowska A, Frankowski M et al (2014) Atomic absorption spectrometry analysis of trace elements in degenerated intervertebral disc tissue. Med Sci Monit 20:2157–2164. https://doi.org/10.12659/MSM.890654

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Lacroix P, Aboyans V (2005) Thermalisme et médecine vasculaire. EMC Cardiol Angéiol 2:344–350. https://doi.org/10.1016/j.emcaa.2005.06.001

    Article  Google Scholar 

  21. Ma’or Z, Henis Y, Alon Y et al (2006) Antimicrobial properties of Dead Sea black mineral mud. Int J Dermatol 45:504–511. https://doi.org/10.1111/j.1365-4632.2005.02621.x

    Article  PubMed  Google Scholar 

  22. Millikan LE (2001) Cosmetology, cosmetics, cosmeceuticals: definitions and regulations. Clin Dermatol 19:371–374. https://doi.org/10.1016/s0738-081x(01)00195-x

    CAS  Article  PubMed  Google Scholar 

  23. Moreira MR, Ponce AG, del Valle CE, Roura SI (2005a) Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT Food Sci Technol 38:565–570. https://doi.org/10.1016/j.lwt.2004.07.012

    CAS  Article  Google Scholar 

  24. Moreira MR, Ponce AG, del Valle CE, Roura SI (2005b) Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT Food Sci Technol 38:565–570. https://doi.org/10.1016/j.lwt.2004.07.012

    CAS  Article  Google Scholar 

  25. Mourelle ML, Gómez CP, Legido JL (2017) The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics 4:46. https://doi.org/10.3390/cosmetics4040046

    CAS  Article  Google Scholar 

  26. Okeke IN, Lamikanra A (2001) Bacteriological quality of skin-moisturizing creams and lotions distributed in a tropical developing country. J Appl Microbiol 91:922–928. https://doi.org/10.1046/j.1365-2672.2001.01456.x

    CAS  Article  PubMed  Google Scholar 

  27. Oumeish OY (2001) The cultural and philosophical concepts of cosmetics in beauty and art through the medical history of mankind. Clin Dermatol 19:375–386. https://doi.org/10.1016/s0738-081x(01)00194-8

    CAS  Article  PubMed  Google Scholar 

  28. Pieroni A, Quave CL, Villanelli ML et al (2004) Ethnopharmacognostic survey on the natural ingredients used in folk cosmetics, cosmeceuticals and remedies for healing skin diseases in the inland Marches, Central-Eastern Italy. J Ethnopharmacol 91:331–344. https://doi.org/10.1016/j.jep.2004.01.015

    Article  PubMed  Google Scholar 

  29. Rouis Z, Abid N, Koudja S et al (2013) Evaluation of the cytotoxic effect and antibacterial, antifungal, and antiviral activities of Hypericum triquetrifolium Turra essential oils from Tunisia. BMC Compl Altern Med 13:24. https://doi.org/10.1186/1472-6882-13-24

    Article  Google Scholar 

  30. Sacchetti G, Maietti S, Muzzoli M et al (2005) Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem 91:621–632. https://doi.org/10.1016/j.foodchem.2004.06.031

    CAS  Article  Google Scholar 

  31. Tepe B, Daferera D, Sokmen A et al (2005) Antimicrobial and antioxidant activities of the essential oil and various extracts of Salviatomentosa Miller (Lamiaceae). Food Chem 90:333–340. https://doi.org/10.1016/j.foodchem.2003.09.013

    CAS  Article  Google Scholar 

  32. Tyagi AK, Malik A (2011) Antimicrobial potential and chemical composition of Eucalyptusglobulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chem 126:228–235. https://doi.org/10.1016/j.foodchem.2010.11.002

    CAS  Article  Google Scholar 

  33. Valero M, Salmerón MC (2003) Antibacterial activity of 11 essential oils against Bacillus cereus in tyndallized carrot broth. Int J Food Microbiol 85:73–81. https://doi.org/10.1016/s0168-1605(02)00484-1

    CAS  Article  PubMed  Google Scholar 

  34. Xu J, Wu J, He Y (2013) Functions of natural organic matter in changing environment. Dordrecht, New York

    Google Scholar 

  35. Zijlstra TR, van de Laar Ma FJ, Bernelot Moens HJ et al (2005) Spa treatment for primary fibromyalgia syndrome: a combination of thalassotherapy, exercise and patient education improves symptoms and quality of life. Rheumatology (Oxford) 44:539–546. https://doi.org/10.1093/rheumatology/keh537

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Brahim Dridi, President and CEO of the Biomare International Group, for the availability of samples. As an exporter, he has mitigated the lack of standards on the scale of Europe and the Mediterranean. Special thanks to Professor Mahjoub Aouni from the Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia, for providing us the Vero cells (ATCC® CCL81™) used in this study.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Amel Guesmi or Mohamed Boumaiza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Erko Stackebrandt.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guesmi, A., Boumaiza, M. & Boudabous, A. Microbiological quality and safety of commercialized thalassotherapy products based on marine mud and algae extracts in Tunisia. Arch Microbiol (2020). https://doi.org/10.1007/s00203-020-01957-1

Download citation

Keywords

  • Thalassotherapy products
  • Microbiological quality
  • Biochemical characterization
  • ARDRA
  • Essential oils
  • Antibacterial activity