Bioproduction, structure elucidation and in vitro antiproliferative effect of eumelanin pigment from Streptomyces parvus BSB49

Abstract

In this study, the structure of the purified extracellular eumelanin pigment isolated from Streptomyces spp. was elucidated by detailed analysis via two different spectroscopic techniques (FT-IR and NMR). In vitro antiproliferative effects of eumelanin were evaluated on HeLa cell line. These experiments were carried out with the evaluation of the parameters including cell viability, cell index, and mitotic index. With the cell viability and cell index, IC50 concentration of eumelanin was determined as 10 μM. This result showed that the IC50 concentration of eumelanin decreased the values of cell viability, cell index and mitotic index. These changes are statistically significant (p < 0.01). The ability of the dissolved eumelanin (250 μg mL−1) to scavenge free radicals was determined via DPPH and ABTS and was shown to be about 87.73% and 75.2%, respectively, compared with standard antioxidants. It was observed that dry weights of eumelanin yield among the selected strains ranged from 160 to 240 mg L−1. The strain with the highest production potential was selected for 16S rDNA sequence analysis and, accordingly, the selected strain BSB49 was identified as Streptomyces parvus and the sequence analysis results were deposited in NCBI under accession number MK894155.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anansiriwattana W, Tanasupawat S, Amnuoypol S, Suwanborirux K (2006) Identification and antimicrobial activities of actinomycetes from soils in samed island, and geldanamycin from strain Pc4-3. Thai J Pharm Sci 30(2006):49–56

    CAS  Google Scholar 

  2. Araújo M, Viveiros R, Correia TR, Correia IJ, Correia VD, Bonifácio T, Casimiro A, Aguiar-Ricardo A (2014) Natural melanin: a potential pH-responsive drug release device. Int J Pharm 469(1):140–145. https://doi.org/10.1016/j.ijpharm.2014.04.051

    CAS  Article  PubMed  Google Scholar 

  3. Arun G, Eyini M, Gunasekaran P (2015) Characterization and biological activities of extracellular melanin produced by Schizophyllum commune. (Fries). Indian J Exp Biol 53:380–387

    CAS  PubMed  Google Scholar 

  4. Avramidis N, Kourounakis A, Hadjipetrou L, Senchuk V (1998) Anti-inflammatory and immunomodulating properties of grape melanin. Inhibitory effects on paw edema and adjuvant induced disease. Arzneim Forsch 48(7):764–771

    CAS  Google Scholar 

  5. Banerjee A, Supakar S, Banerjee R (2014) Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization. PLoS ONE 9(1):e84574. https://doi.org/10.1371/journal.pone.0084574

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Cacchio P, Ercole C, Cappuccio G, Lepidi A (2003) Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil. Geomicrobiol J 20(2):85–98. https://doi.org/10.1080/01490450303883

    CAS  Article  Google Scholar 

  7. Cetin I, Topcul MR (2017) İn vitro antiproliferative effects of nab-paclitaxel with liposomal cisplatin on MDA-MB-231 and MCF-7 breast cancer cell lines. J BUON 22:347–354

    PubMed  Google Scholar 

  8. Çetin I, Topçul MR (2019) Evaluation of the cytotoxic effect of Ly2109761 on HeLa cells using the xCELLigence RTCA system. Oncol Lett 17:683–687. https://doi.org/10.3892/ol.2018.9556

    CAS  Article  PubMed  Google Scholar 

  9. Coates J (2006) Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry: applications, theory and instrumentation. doi: https://doi.org/10.1002/9780470027318.a5606

  10. Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74(3):311–345. https://doi.org/10.1017/S0006323199005356

    CAS  Article  PubMed  Google Scholar 

  11. Dahal B, Nandakafle G, Perkins L, Brözel VS (2017) Diversity of free-Living nitrogen fixing Streptomyces in soils of the badlands of South Dakota. Microbiol Res 195(2017):31–39. https://doi.org/10.1016/j.micres.2016.11.004

    CAS  Article  PubMed  Google Scholar 

  12. Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93(3):931–940

    CAS  Article  Google Scholar 

  13. El-Naggar N-A, El-Ewasy SM (2017) Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Sci Rep 7(2017):42129. https://doi.org/10.1038/srep42129

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. El-Obeid A, Al-Harbi S, Al-Jomah N, Hassib A (2006) Herbal melanin modulates tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF) production. Phytomedicine 13(5):324–333. https://doi.org/10.1016/j.phymed.2005.03.007

    CAS  Article  PubMed  Google Scholar 

  15. Ganesh Kumar C, Sahu N, Narender Reddy G, Prasad RBN, Nagesh N, Kamal A (2013) Production of melanin pigment from Pseudomonas stutzeri isolated from red seaweed Hypnea musciformis. Lett Appl Microbiol 57(4):295–302. https://doi.org/10.1111/lam.12111

    CAS  Article  PubMed  Google Scholar 

  16. Geng J, Yuan P, Shao C, Yu SB, Zhou B, Zhou P, Chen XD (2010) Bacterial melanin interacts with double-stranded DNA with high affinity and may inhibit cell metabolism in vivo. Arch Microbiol 192(5):321–329. https://doi.org/10.1007/s00203-010-0560-1

    CAS  Article  PubMed  Google Scholar 

  17. Hung Y-C, Sava V, Hong M-Y, Huang GS (2004) Inhibitory effects on phospholipase A2 and antivenin activity of melanin extracted from Thea sinensis Linn. Life Sci 74:2037–2047. https://doi.org/10.1016/j.lfs.2003.09.048

    CAS  Article  PubMed  Google Scholar 

  18. Joshi V, Attri D, Bala A, Bhushan S (2003) Microbial pigments. Indian J Biotechnol 2(2003):362–369

    CAS  Google Scholar 

  19. Kalka K, Mukhtar H, Turowski-Wanke A, Merk H (2000) Biomelanin antioxidants in cosmetics: assessment based on inhibition of lipid peroxidation. Skin Pharmacol Physiol 13(3–4):143–149. https://doi.org/10.1038/srep42129

    CAS  Article  Google Scholar 

  20. Katritzky AR, Akhmedov NG, Denisenko N, Ov D (2002) 1H NMR spectroscopic characterization of solutions of Sepia melanin, Sepia melanin free acid and human hair melanin. Pigment Cell Res 15(2):93–97. https://doi.org/10.1034/j.1600-0749.2002.1o062.x

    CAS  Article  PubMed  Google Scholar 

  21. Korn-Wendisch F, Kutzner H (1991) The family Streptomycetaceae. The Prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, Chap. 41. Springer, Berlin. doi: https://doi.org/10.1002/adma.201502201

  22. Kumar A, Hs V, Singh J, Dwivedi S, Kumar M (2015) Microbial pigments: production and their applications in various industries. Int J Pharm Biol Sci 5(1):203–208

    CAS  Google Scholar 

  23. Madhusudhan D, Mazhari BBZ, Dastager SG, Agsar D (2014) Production and cytotoxicity of extracellular insoluble and droplets of soluble melanin by Streptomyces lusitanus DMZ-3. Biomed Res Int 2014:1–11. https://doi.org/10.1155/2014/306895

    CAS  Article  Google Scholar 

  24. Montefiori DC, Zhou J (1991) Selective antiviral activity of synthetic soluble l-tyrosine and l-dopa melanins against human immunodeficiency virus in vitro. Antiviral Res 15(1):11–25

    CAS  Article  Google Scholar 

  25. Moon JH, Terao J (1998) Antioxidant activity of caffeic acid and dihydrocaffeic acid in lard and human low-density lipoprotein. J Agric Food Chem 46(12):5062–5065. https://doi.org/10.1021/jf9805799

    CAS  Article  Google Scholar 

  26. Mostert AB, Powell BJ, Pratt FL, Hanson GR, Sarna T, Gentle IR, Meredith P (2012) Role of semiconductivity and ion transport in the electrical conduction of melanin. Proc Natl Acad Sci 109(23):8943–8947. https://doi.org/10.1073/pnas.1119948109

    Article  PubMed  Google Scholar 

  27. Paolo WF, Dadachova E, Mandal P, Casadevall A, Szaniszlo PJ, Nosanchuk JD (2006) Effects of disrupting the polyketide synthase gene WdPKS1 in Wangiella [Exophiala] dermatitidis on melanin production and resistance to killing by antifungal compounds, enzymatic degradation, and extremes in temperature. BMC Microbiol 6(1):55. https://doi.org/10.1186/1471-2180-6-55

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Ravishankar J, Muruganandam V, Suryanarayanan T (1995) Isolation and characterization of melanin from a marine fungus. Bot Mar 38(1–6):413–416. https://doi.org/10.1515/botm.1995.38.1-6.413

    CAS  Article  Google Scholar 

  29. Rehnstrom AL, Free SJ (1996) The isolation and characterization of melanin-deficient mutants of Monilinia fructicola. Physiol Mol Plant P 49(5):321–330. https://doi.org/10.1006/pmpp.1996.0057

    Article  Google Scholar 

  30. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(910):12311237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  Google Scholar 

  31. Şahin N, Uğur A (2003) Investigation of the antimicrobial activity of some Streptomyces isolates. Turk J Biol 27(2):79–84

    Google Scholar 

  32. Sajjan SS, Anjaneya O, Guruprasad BK, Anand SN, Suresh BM, Karegoudar T (2013) Properties and functions of melanin pigment from Klebsiella sp. GSK Korean J Microbiol Biotechnol 41(1):60–69. https://doi.org/10.4014/kjmb.1210.10002

    CAS  Article  Google Scholar 

  33. Sava V, Hung Y, Blagodarsky V, Hong MY, Huang G (2003) The liver-protecting activity of melanin-like pigment derived from black tea. Food Res Int 36(5):505–511. https://doi.org/10.1016/S0963-9969(02)00199-0

    CAS  Article  Google Scholar 

  34. Sivaperumal P, Kamala K, Rajaram R (2015) Bioactive DOPA melanin isolated and characterised from a marine actinobacterium Streptomyces sp. MVCS6 from Versova coast. Nat Prod Res 29(22):2117–2121. https://doi.org/10.1080/14786419.2014.988712

    CAS  Article  PubMed  Google Scholar 

  35. Srisuk P, Correlo VM, Leonor IB, Palladino P, Reis RL (2016) Redox activity of melanin from the ink sac of Sepia officinalis by means of colorimetric oxidative assay. Nat Prod Res 30(8):982–986

    CAS  Article  Google Scholar 

  36. Tarangini K, Mishra S (2014) Production of melanin by soil microbial isolate on fruit waste extract: two step optimization of key parameters. Biotechnol Rep 4(2014):139–146. https://doi.org/10.1016/j.btre.2014.10.001

    Article  Google Scholar 

  37. Topçul M, Çeti̇n I, ÖzbaşKolusayin TSOMÖ (2018) In vitro cytotoxic effect of PARP inhibitor alone and in combination with nab-paclitaxel on triple-negative and luminal A breast cancer cells. Oncol Rep 40(1):527–535. https://doi.org/10.3892/or.2018.6364

    CAS  Article  PubMed  Google Scholar 

  38. Topcul MR, Cetin I (2016) In vitro cytotoxic effect of tyrosine kinase inhibitor sunitinib malate alone and in combination with hyperthermia on breast adenocarcinoma MCF-7 cells. J BUON 21(3):556–563

    PubMed  Google Scholar 

  39. Tuli HS, Chaudhary P, Beniwal V, Sharma AK (2015) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52(8):4669–4678. https://doi.org/10.1007/s13197-014-1601-6

    CAS  Article  PubMed  Google Scholar 

  40. Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48(7):1065–1079. https://doi.org/10.1016/j.procbio.2013.06.006

    CAS  Article  Google Scholar 

  41. Ye M, Wang Y, Qian M, Chen X, Hu X (2011) Preparation and properties of the melanin from Lachnum singerianum. IJBAS-IJENS 11(3):51–58

    Google Scholar 

  42. Zhang R, Fan Q, Yang M, Cheng K, Lu X, Zhang L, Huang W, Cheng Z (2015) Engineering melanin nanoparticles as an efficient drug–delivery system for imaging-guided chemotherapy. Adv Mater 27(34):5063–5069. https://doi.org/10.1002/adma.201502201

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Scientific Research Projects Coordination Unit of Bayburt University (project number: 2019/01-69001-04). We would like to thank Dr. Nesrin ECEM BAYRAM for her precious help in determining the antioxidant activity of eumelanin pigment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sinan Bayram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1092 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bayram, S., Dengiz, C., Gerçek, Y.C. et al. Bioproduction, structure elucidation and in vitro antiproliferative effect of eumelanin pigment from Streptomyces parvus BSB49. Arch Microbiol (2020). https://doi.org/10.1007/s00203-020-01956-2

Download citation

Keywords

  • Eumelanin
  • Bioproduction
  • Structure elucidation
  • Antiproliferative effect
  • Antioxidant effect