Skip to main content

Advertisement

Log in

A comprehensive review of metabolic and genomic aspects of PAH-degradation

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Polyaromatic hydrocarbons (PAHs) are considered as hazardous organic priority pollutants. PAHs have immense public concern and critical environmental challenge around the globe due to their toxic, carcinogenic, and mutagenic properties, and their ubiquitous distribution, recalcitrance as well as persistence in environment. The knowledge about harmful effects of PAHs on ecosystem along with human health has resulted in an interest of researchers on degradation of these compounds. Whereas physico-chemical treatment of PAHs is cost and energy prohibitive, bioremediation i.e. degradation of PAHs using microbes is becoming an efficient and sustainable approach. Broad range of microbes including bacteria, fungi, and algae have been found to have capability to use PAHs as carbon and energy source under both aerobic and anaerobic conditions resulting in their transformation/degradation. Microbial genetic makeup containing genes encoding catabolic enzymes is responsible for PAH-degradation mechanism. The degradation capacity of microbes may be induced by exposing them to higher PAH-concentration, resulting in genetic adaptation or changes responsible for high efficiency towards removal/degradation. In last few decades, mechanism of PAH-biodegradation, catabolic gene system encoding catabolic enzymes, and genetic adaptation and regulation have been investigated in detail. This review is an attempt to overview current knowledge of microbial degradation mechanism of PAHs, its genetic regulation with application of genetic engineering to construct genetically engineered microorganisms, specific catabolic enzyme activity, and application of bioremediation for reclamation of PAH-contaminated sites. In addition, advanced molecular techniques i.e. genomic, proteomic, and metabolomic techniques are also discussed as powerful tools for elucidation of PAH-biodegradation/biotransformation mechanism in an environmental matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbasian F, Lockington R, Mallavarapu M, Naidu R (2015) A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol. Springer Science + Business Media, New York. https://doi.org/10.1007/s12010-015-1603-5

    Article  Google Scholar 

  • Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123

    Google Scholar 

  • Agrawal N, Shahi SK (2017) Degradation of polycyclic aromatic hydrocarbon (pyrene) using novel fungal strain Coriolopsis byrsina strain APC5. Int Biodeter Biodegr 122:69–81

    CAS  Google Scholar 

  • Agrawal PK, Shrivastava R, Verma J (2019) Bioremediation approaches for degradation and detoxification of polycyclic aromatic hydrocarbons. In: Bharagava R, Chowdhary P (eds) Emerging and eco-friendly approaches for waste management. Springer, Singapore

    Google Scholar 

  • Albers PH (2006) Birds and polycyclic aromatic hydrocarbons. Avian Poultry Biol Rev 17(4):125–140

    Google Scholar 

  • Alegbeleye OO, Opeolu BO, Jackson V (2017) Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa. Braz J Microbiol 48(2):314–325

    CAS  PubMed  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic, San Diego

    Google Scholar 

  • Al-Hawash AB, Alkooranee JT, Zhang X, Ma F (2018) Fungal degradation of polycyclic aromatic hydrocarbons. Int J Pure App Biosci 6(2):8–24

    Google Scholar 

  • Ambrosoli R, Petruzzelli L, Minati JL, Marsan FA (2005) Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions. Chemosphere 60(9):1231–1236

    CAS  PubMed  Google Scholar 

  • Anwer J, Mehrotra NK (1988) Teratogenic effects of benzo[a]pyrene in developing chick embryo. Toxicol Lett 40:195–201

    CAS  PubMed  Google Scholar 

  • Armstrong BG, Hutchinson E, Unwin J, Fletcher T (2004) Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environ Health Perspect 112(9):970–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • ATSDR: Agency for Toxic Substances and Disease Registry (1995) Toxicological profile for polycyclic aromatic hydrocarbons (PAHs) (update). US Department of Health and Human Services, Atlanta

    Google Scholar 

  • ATSDR: Agency for Toxic Substances and Disease Registry (2009) Case studies in environmental medicine—toxicity of polycyclic aromatic hydrocarbons (PAHs). US Department of Health and Human Services, Atlanta

    Google Scholar 

  • Bach PB, Kelley MJ, Tate RC, McCrory DC (2003) Screening for lung cancer: a review of the current literature. Chest 123:72–82

    Google Scholar 

  • Ball AS, Jackson AM (1995) The recovery of lignocellulose-degrading enzymes from spent mushroom compost. Bioresour Technol 54:311–314

    CAS  Google Scholar 

  • Barkay T, Pritchard H (1988) Adaptation of aquatic microbial communities to pollutant stress. Microbiol Sci 5:165–169

    CAS  PubMed  Google Scholar 

  • Batie CJ, LaHaie E, Ballou DP (1987) Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia. J Biol Chem 262:1510–1518

    CAS  PubMed  Google Scholar 

  • Bayoumi RA (2009) Bacterial bioremediation of polycyclic aromatic hydrocarbons in heavy oil contaminated soil. J Appl Sci Res 5(2):197–211

    Google Scholar 

  • Bergueiro-López JR, Moreno-García-Luengo S, Serra-Socías F, Fuertes-Pérez A, Pérez-Navarro-Gómez A, Morales-Correas N, Domínguez-Laseca F (1996) Biodegradation of hydrocarbon residuals by biological activators in the presence of INIPOL EAP 22. Spill Sci Technol Bull 3(4):273–276

    Google Scholar 

  • Bibi N, Hamayun M, Hussain A, Sayyed A, Khan SA (2017) Adaptation and optimization of various physico-chemical conditions for pyrene degradation by bacteria isolated from the Rhizospheric soil of Morus alba. Int J Biosci 10(4):343–353

    CAS  Google Scholar 

  • Billiard SM, Meyer JN, Wassenberg DM, Hodson PV, Di Giulio RT (2008) Nonadditive effects of PAHs on early vertebrate development: mechanisms and implications for risk assessment. Toxicol Sci 105(1):5–23

    CAS  PubMed  Google Scholar 

  • Birolli WG, Santos DA, Alvarenga N, Garcia ACFS, Romão LPC, Porto ALM (2017) Biodegradation of anthracene and several PAHs by the marine-derived fungus Cladosporium sp. CBMAI 1237. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2017.10.023

    Article  PubMed  Google Scholar 

  • Bishnoi K, Kumar R, Bishnoi NR (2007) Biodegradation of polycyclic aromatic hydrocarbons by white rot fungi Phanerochaete chrysosporium in sterile and unsterile soil. J Sci Ind Res 67:538–542

    Google Scholar 

  • Bispo A, Jourdain MJ, Jauzein M (1999) Toxicity and genotoxicity of industrial soils polluted by polycyclic aromatic hydrocarbons (PAHs). Org Geochem 30:947–952

    CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    CAS  Google Scholar 

  • Cao B, Nagarajan K, Loh KC (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85:207–228

    CAS  PubMed  Google Scholar 

  • Cao L, Wang Q, Zhang J, Li C, Yan X, Lou X, Xia Y, Hong Q, Li S (2012) Construction of a stable genetically engineered rhamnolipid-producing microorganism for remediation of pyrene-contaminated soil. World J Microbiol Biotechnol 28(9):2783–2790

    CAS  PubMed  Google Scholar 

  • Cao J, Lai Q, Yuan J, Shao Z (2015) Genomic and metabolic analysis of fluoranthene degradation pathway in Celeribacter indicus P73T. Sci Rep 5:7741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carls MG, Meador JP (2009) A perspective on the toxicity of petrogenic PAHs to developing fish embryos related to environmental chemistry. Hum Ecol Risk Assess 15:1084–1098

    CAS  Google Scholar 

  • Cébron A, Norini M, Beguiristain T, Leyval C (2008) Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from gram positive and gram negative bacteria in soil and sediment samples. J Microbiol Methods 73(2):148–159

    PubMed  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368. https://doi.org/10.1007/BF00129093

    Article  CAS  Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4:331–338

    CAS  Google Scholar 

  • Chaineau C, Rougeux G, Yepremian C, Oudot J (2005) Effects ofnutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol Biochem 37:1490–1497

    CAS  Google Scholar 

  • Chan SMN, Luan T, Wong MH, Tam NFY (2006) Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environ Toxicol Chem 25:1772–1779

    CAS  PubMed  Google Scholar 

  • Chaudhary P, Sharma R, Singh SB, Nain L (2011) Bioremediation of PAH by Streptomyces sp. Bull Environ Contam Toxicol 86:268–271

    CAS  PubMed  Google Scholar 

  • Chulalaksananukul S, Gadd GM, Sangvanich P, Sihanonth P, Piapukiew J, Vangnai AS (2006) Biodegradation of benzo(a)pyrene by a newly isolated Fusarium sp. FEMS Microbiol Lett 262(1):99–106

    CAS  PubMed  Google Scholar 

  • Chun HK, Ohnishi Y, Misawa N, Shindo K, Hayashi M, Harayama S, Horinouchi S (2001) Biotransformation of phenanthrene and 1-methoxynaphthalene with Streptomyces lividans cells expressing a marine bacterial phenanthrene dioxygenase gene cluster. Biosci Biotechnol Biochem 65:1774–1781

    CAS  PubMed  Google Scholar 

  • Churchill PF, Morgan AC, Kitchens E (2008) Characterization of a pyrene degrading Mycobacterium sp strain CH-2. J Environ Sci Health Part B 43:698–706

    CAS  Google Scholar 

  • Clar E (1964) Polycyclic hydrocarbons. Academic Press, London

    Google Scholar 

  • Collins JF, Brown JP, Dawson SV, Marty MA (1991) Risk assessment for benzo[a]pyrene. Regul Toxicol Pharm 13:170–184

    CAS  Google Scholar 

  • Colom-Díaza JM, Alzueta MU, Fernandes U, Costa M (2019) Emissions of polycyclic aromatic hydrocarbons from a domestic pellets-fired boiler. Fuel 247:108–112

    Google Scholar 

  • Darmawan R, Nakata H, Ohta H, Niidome T, Takikawa K, Morimura S (2015) Isolation and evaluation of PAH degrading bacteria. J Bioremed Biodeg 6:283

    Google Scholar 

  • Das D, Baruah R, Roy AS, Singh AK, Deka Boruah HP, Kalita J, Bora TC (2015) Complete genome sequence analysis of Pseudomonas aeruginosa N002 reveals its genetic adaptation for crude oil degradation. Genomics 105:182–190

    CAS  PubMed  Google Scholar 

  • Davila DR, Romero DL, Burchiel SW (1996) Human T cells are highly sensitive to suppression of mitogenesis by polycyclic aromatic hydrocarbons and this effect is differentially reversed by a-naphthoflavone. Toxicol Appl Pharm 139:333–341

    CAS  Google Scholar 

  • Dean JH, Luster MI, Munson AE, Kimber I (1994) Immunotoxicology and immunopharmacology, 2nd edn. Raven Press, Target Organ Toxicology series

    Google Scholar 

  • Denissenko MF (1996) Preferential formation of benzo(a)pyrene adducts at lung cancer mutational hotspots in P53. Science 274:430–432

    CAS  PubMed  Google Scholar 

  • Denome SA, Stanley DC, Olson ES, Young KD (1993) Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol 175(21):6890–6901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhanya MS, Kalia A (2020) Bioremediation: an eco-friendly cleanup strategy for polyaromatic hydrocarbons from petroleum industry waste. In: Saxena G, Bharagava R (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore. https://doi.org/10.1007/978-981-13-1891-7_18

    Chapter  Google Scholar 

  • Dore SY, Clancy QE, Rylee SM, Kulpa CF (2003) Naphthalene-utilizing and mercury-resistant bacteria isolated from an acidic environment. Appl Microbiol Biotechnol 63:194–199

    CAS  PubMed  Google Scholar 

  • Fernández M, Niqui-Arroyo JL, Conde S, Ramos JL, Duque E (2012) Enhanced tolerance to naphthalene and enhanced rhizoremediation performance for Pseudomonas putida KT2440 via the NAH7 catabolic plasmid. Appl Environ Microbiol 78(15):5104–5110

    PubMed  PubMed Central  Google Scholar 

  • Filonov AE, Akhmetov LI, Puntus IF, Esikova TZ, Gafarov AB, Izmalkova TY, Sokolov SL, Kosheleva IA, Boronin AM (2005) The construction and monitoring of genetically tagged, plasmid-containing, naphthalene-degrading strains in soil. Microbiology 74(4):453–458

    CAS  Google Scholar 

  • Franzetti A, Caredda P, Ruggeri C, Colla PL, Tamburini E, Papacchini M, Bestetti G (2009) Potential applications of surface active compounds by Gordonia sp strain BS29 in soil remediation technologies. Chemosphere 75:801–807

    CAS  PubMed  Google Scholar 

  • Friello DA, Mylroie JR, Chakrabarty AM (1976) Use of genetically engineered multi-plasmid microorganisms for rapid degradation of fuel hydrocarbons. In: Sharpley JM, Kaplan AM (eds) The proceedings of the third international biodegradation symposium. Applied Science Publishers, London, pp 205–214

  • Fuenmayor SL, Wild M, Boyes AL, Williams PA (1998) A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp strain U2. J Bacteriol 180(9):2522–2530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furusawa Y, Nagarajan V, Tanokura M, Masai E, Fukuda M, Senda T (2004) Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp strain RHA1. J Mol Biol 342:1041–1052

    CAS  PubMed  Google Scholar 

  • Gamboa RT, Gamboa AR, Bravo AH, Ostrosky WP (2008) Genotoxicity in child populations exposed to polycyclic aromatic hydrocarbons (PAHs) in the air from Tabasco, Mexico. Int J Environ Res Publ Health 5(5):349–355

    CAS  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369

    PubMed  PubMed Central  Google Scholar 

  • Govarthanan M, Fuzisawa S, Hosogai T, Chang YC (2017) Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp CHY-2 and characterization of its manganese peroxidase activity. RSC Adv 7:20716–20723

    CAS  Google Scholar 

  • Guerin TF (1999) Bioremediation of phenols and polycyclic aromatic hydrocarbons in creosote contaminated soil using ex situ land treatment. J Hazard Mater 65:305–315

    CAS  PubMed  Google Scholar 

  • Gupta S, Pathak B, Fulekar MH (2015) Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds: a review. Rev Environ Sci Biotechnol 14:241–269

    CAS  Google Scholar 

  • Hadibarata T, Kristanti RA (2014) Potential of a white-rot fungus Pleurotus eryngii F032 for degradation and transformation of fluorene. Fungal Biol 118:222–227

    CAS  PubMed  Google Scholar 

  • Hamann C, Hegemann J, Hildebrandt A (1999) Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol Lett 173:255–263

    CAS  PubMed  Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic-hydrocarbons and dibenzo Pdioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:6948–6952

    Google Scholar 

  • Haritash AK, Kaushik CP (2009a) Biodegradation aspects of polycyclic aromatic hydrocarbons: a review. J Hazard Mater 169:1–15

    CAS  PubMed  Google Scholar 

  • Haritash AK, Kaushik CP (2009b) Seasonal and spatial occurrence and distribution of respirable particulate-bound atmospheric polycyclic aromatic hydrocarbons in Hisar City (India) and their potential health-risks. Asian J Water Environ Pollut 8(1):73–80

    Google Scholar 

  • Haritash AK, Kaushik CP (2016) Degradation of low molecular weight polycyclic aromatic hydrocarbons by microorganisms isolated from contaminated soil. Int J Environ Sci 6(5):646–656

    CAS  Google Scholar 

  • Hedlund BP, Geiselbrecht AD, Bair TJ, Staley JT (1999) Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen nov, sp nov. Appl Environ Microbiol 65:251–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Vega JC, Cady B, Kayanja B, Mauriello A, Cervantes N, Gillespie A, Lavia L, Trujillo J, Alkio M, Colón-Carmona A (2017) Detoxification of polycyclic aromatic hydrocarbons (PAHs) in Arabidopsis thaliana involves a putative flavonol synthase. J Hazard Mater 321:268–280

    PubMed  Google Scholar 

  • Hesham AEL, Mawad AMM, Mostafa YM, Shoreit A (2014) Biodegradation ability and catabolic genes of petroleum-degrading Sphingomonas koreensis strain ASU-06 isolated from Egyptian oily soil. Biomed Res Int 2014:1–10. https://doi.org/10.1155/2014/127674

    Article  CAS  Google Scholar 

  • Hickey WJ, Chen S, Zhao J (2012) The phn island: a new genomic island encoding catabolism of polynuclear aromatic hydrocarbons. Front Microbiol 3:1–15

    Google Scholar 

  • Hofrichhter M, Vares T, Kalsi M, Galkin S, Schneibner K, Fritsche W, Hatakka A (1999) Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid state fermentation of wheat straw with the white rot fungus Nematoloma forwardii. Appl Environ Microbiol 65:1864–1870

    Google Scholar 

  • Hong YW, Yuan DX, Lin QM, Yang TL (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Poll Bull 56(8):1400–1405

    CAS  Google Scholar 

  • Horinouchi M, Nishio Y, Shimpo E, Rugsaseel S, Juntongjin K, Thaniyavarn S, Nojiri H, Yamane H, Omori T (2000) Removal of polycyclic aromatic hydrocarbons from oil-contaminated Kuwaiti soil. Biotechnol Lett 22:687–691

    CAS  Google Scholar 

  • Hsu GW, Huang X, Luneva NP, Geacintov NE, Beese LS (2005) Structure of a high fidelity DNA polymerase bound to a benzo(a)pyrene adduct that blocks replication. J Biol Chem 280(5):3764–3770

    CAS  PubMed  Google Scholar 

  • Hu C, Hou J, Zhou Y, Sun H, Yin W, Zhang Y, Wang X, Wang G, Chen W, Yuan J (2018) Association of polycyclic aromatic hydrocarbons exposure with atherosclerotic cardiovascular disease risk: a role of mean platelet volume or club cell secretory protein. Environ Pollut 233:45–53. https://doi.org/10.1016/j.envpol.2017

    Article  CAS  PubMed  Google Scholar 

  • IPCS (International Programme on Chemical Safety) (2010) Polycyclic aromatic hydrocarbons, selected non-heterocyclic. http://www.inchem.org/documents/ehc/ehc/ehc202.htm

  • Jacques RJS, Santos EC, Bentoa FM, Peralbab MCR, Selbacha PA, Sá ELS, Camargo FAO (2005) Anthracene biodegradation by Pseudomonas sp. isolated from a petrochemical sludge landfarming site. Int Biodeter Biodegr 56:143–150

    CAS  Google Scholar 

  • Jain PK, Bajpai V (2012) Biotechnology of bioremediation—a review. Int J Environ Sci 3(1):535–549

    CAS  Google Scholar 

  • Jauregui R, Rodelas B, Geffers R, Boon N, Pieper DH, Vilchez-Vargasd R (2014) Draft genome sequence of the naphthalene degrader Herbaspirillum sp strain RV1423. Genome Announc 2(2):e00188-14

    PubMed  PubMed Central  Google Scholar 

  • Jeon CO, Park M, Ro HS, Park W, Madsen EL (2006) The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene clusters and novel regulatory control. Appl Environ Microbiol 72(2):1086–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Yang X, Liu B, Zhao H, Cheng Q, Cai B (2004) Catechol 2,3-dioxygenase from Pseudomonas sp strain ND6: gene sequence and enzyme characterization. Biosci Biotechnol Biochem 68(8):1798–1800

    CAS  PubMed  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH degradation in soil. Environ Pollut 133:71–84

    CAS  PubMed  Google Scholar 

  • Johnsen AR, de Lipthay JR, Sørensen SJ, Ekelund F, Christensen P, Andersen O, Karlson U, Jacobsen CS (2006) Microbial degradation of street dust PAHs in microcosms simulating diffuse pollution of urban soil. Environ Microbiol 8:535–545

    CAS  PubMed  Google Scholar 

  • Jouanneau Y, Meyer C, Jakoncic J, Stojanoff V, Gaillard J (2006) Characterization of a naphthalene dioxygenase endowed with an exceptionally broad substrate specificity toward polycyclic aromatic hydrocarbons. Biochemistry 45:12380–12391

    CAS  PubMed  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeter Biodegr 45:57–88

    CAS  Google Scholar 

  • Kastner M, Breuer JM, Mahro B (1998) Impact of inoculation protocols, salinity and pH on degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl Environ Microbiol 64:359–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushik CP, Haritash AK (2006) Polycyclic aromatic hydrocarbons (PAHs) and environmental health. Our Earth 3(3):1–7

    Google Scholar 

  • Kaushik CP, Sangwan P, Haritash AK (2012) Association of polycyclic aromatic hydrocarbons (PAHs) with different sizes of atmospheric particulate in Hisar City and its health aspects. Polycycl Aromat Comp 32(5):626–642

    CAS  Google Scholar 

  • Keum YS, Seo JS, Li QX, Kim JH (2008) Comparative metabolomic analysis of Sinorhizobium sp C4 during the degradation of phenanthrene. Appl Microbiol Biotechnol 80:863–872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AA, Wang R, Cao W, Doerge DR, Wennerstrom D, Cerniglia CE (2001) Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp strain PYR-1. Appl Environ Microbiol 67(8):3577–3585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan S, Hesham AE, Qing G, Shuang L, He J (2009) Biodegradation of pyrene and catabolic genes in contaminated soils cultivated with Lolium multiflorum L. Soils Sedim 9:482–491

    CAS  Google Scholar 

  • Kim YH, Freeman JP (2005) Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl Microbiol Biotechnol 67:275–285

    CAS  PubMed  Google Scholar 

  • Kim SJ, Jones RC, Cha CJ, Kweon O, Edmondson RD, Cerniglia CE (2004) Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel electrophoresis and de novo sequencing methods. Proteomics 4:3899–3908

    CAS  PubMed  Google Scholar 

  • Kim S, Kweon O, Freeman JP, Jones RC, Adjei MD, Jhoo J, Edmondson RD, Cerniglia CE (2006) Molecular cloning and expression of genes encoding a novel dioxygenase involved in low- and high-molecular-weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 72(2):1045–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Kweon O, Jones RC, Freeman JP, Edmondson RD, Cerniglia CE (2007) Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 189:464–472

    CAS  PubMed  Google Scholar 

  • Kim KH, Jahan SA, Kabir E, Brown RJC (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80

    CAS  PubMed  Google Scholar 

  • Kimber L, White JR (1986) An overview of immunotoxicology and carcinogenic polycyclic aromatic hydrocarbons. Environ Carcinog Rev Environ Carcinog Ecotoxicol Rev 4(2):163–202. https://doi.org/10.1080/10590508609373342

    Article  Google Scholar 

  • King JMH, DiGrazia PM, Applegate B, Burlage RS, Sanseverino J, Dunbar P, Larimer F, Sayler GS (1990) Rapid, sensitive bioluminescence reporter technology for naphthalene exposure and biodegradation. Science 249:778–781

    CAS  PubMed  Google Scholar 

  • Kiyohara H, Torigoe S, Kaida N, Asaki T, Iida T, Hayashi H, Takizawa N (1994) Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J Bacteriol 176(8):2439–2443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kristensen P, Eilertsen E, Einarsdóttir E, Haugen A, Skaug V, Ovrebo S (1995) Fertility in mice after prenatal exposure to benzo[a]pyrene and inorganic lead. Environ Health Perspect 103:588–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y (2003) Identification of pyrene-induced proteins in Mycobacterium sp strain 6PY1: evidence for two ring-hydroxylating dioxygenases. J Bacteriol 185(13):3828–3841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulakov LA, Allen CC, Lipscomb DA, Larkin MJ (2000) Cloning and characterization of a novel cis-naphthalene dihydrodiol dehydrogenase gene (narB) from Rhodococcus sp NCIMB12038. FEMS Microbiol Lett 182(2):327–331

    CAS  PubMed  Google Scholar 

  • Kumar L, Bharadvaja N (2019) Enzymatic bioremediation: a smart tool to fight environmental pollutants. Smart Bioremediat Technol Microbial Enzymes. https://doi.org/10.1016/b978-0-12-818307-6.00006-8

    Article  Google Scholar 

  • Kumar M, Leon V, De Sisto Materano A, Ilzins OA, Galindo-Castro I, Fuenmayor SL (2006) Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1. Z Naturforsch 61:203–212

    CAS  Google Scholar 

  • Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M (2016) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168:944–968

    PubMed  Google Scholar 

  • Ladousse A, Tramier B (1991) Results of 12 years of research in spilled oil bioremediation: Inipol EAP 22. Proceedings of the International Oil Spill Conference, March 4–7, 1991, San Diego, California, pp 577–581

  • Lange B, Kremer S, Anke H, Sterner O (1996) Metabolism of pyrene by basidiomycetous fungi of the genera Crinipellis, Marasmius, and Marasmiellus. Can J Microbiol 42:1179–1183

    CAS  Google Scholar 

  • Larkin MJ, Allen CCR, Kulakov LA, Lipscomb DA (1999) Purification and characterization of a novel naphthalene dioxygenase from Rhodococcus sp Strain NCIMB12038. J Bacteriol 181(19):6200–6204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laurie AD, Jones G (2000) Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl Environ Microbiol 66(5):1814–1817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laurie AD, Lloyd-Jones G (1999a) Conserved and hybrid meta-cleavage operons from PAH-degrading Burkholderia RP007. Biochem Biophys Res Commun 262:308–314

    CAS  PubMed  Google Scholar 

  • Laurie AD, Lloyd-Jones G (1999b) The phn Genes of Burkholderia sp strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 181(2):531–540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Floch S, Merlin FX, Guillerme M (1997) Bioren: recent experiment on oil polluted shoreline in temperate climate. In: Alleman BC, Leeson A (eds) In-situ and on-site bioremediation. Battelle Press, Columbus, pp 411–417

    Google Scholar 

  • Le Floch S, Merlin FX, Guillerme M, Dalmazzone C, Le Corre P (1999) A field experimentation on bioremediation. Bioren Environ Technol 20:897–907

    Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microb Rev 54(3):305–315

    CAS  Google Scholar 

  • Lee SE, Seo JS, Keum YS, Lee KJ, Li QX (2007) Fluoranthene metabolism and associated proteins in Mycobacterium sp JS14. Proteomics 7:2059–2069

    CAS  PubMed  Google Scholar 

  • Lee H, JangY Kim JM, Kim GH, Kim JJ (2013) White-rot fungus Merulius tremellosus KUC9161 identified as an effective degrader of polycyclic aromatic hydrocarbons. J Basic Microbiol 53:195–199

    PubMed  Google Scholar 

  • Lee H, Yun SY, Jang S, Kim GH, Kim JJ (2015) Bioremediation of polycyclic aromatic hydrocarbons in creosote-contaminated soil by Peniophora incarnata KUC8836. Bioremediat J 19:1–8

    Google Scholar 

  • Li P, Li H, Stagnitti F, Wang X, Zhang H, Gong Z, Liu W, Xiong X, Li L, Austin C, Barry DA (2005) Biodegradation of pyrene and Phenanthrene in soil using immobilized fungi Fusarium sp. Bull Environ Contam Toxicol 75:443–450

    CAS  PubMed  Google Scholar 

  • Lily MK, Bahuguna A, Dangwal K, Garg V (2009) Degradation of Benzo [a] Pyrene by a novel strain Bacillus subtilis BMT4i (MTCC 9447). Braz J Microbiol 40:884–892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindstrom JE, Prince RC, Clark JC, Grossman MJ, Yeager TR, Braddock JF, Brown EJ (1991) Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill. Appl Environ Microbiol 57:2514–2522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Luan TG, Lu NN, Lan CY (2006) Toxicity of fluoranthene and its biodegradation by Cyclotella caspia Alga. J Integr Plant Biol 48(2):169–180

    CAS  Google Scholar 

  • Logan DT (2007) Perspective on ecotoxicology of PAHs to fish. Hum Ecol Risk Assess Int J 13(2):302–316

    CAS  Google Scholar 

  • Lu SY, Li YX, Zhang JQ, Zhang T, Liu GH, Huang MZ, Li X, Ruan JJ, Kannan K, Qiu RL (2016) Associations between polycyclic aromatic hydrocarbon (PAH) exposure and oxidative stress in people living near ewaste recycling facilities in China. Environ Int 94:161–169. https://doi.org/10.1016/j.envint.2016.05.021

    Article  CAS  PubMed  Google Scholar 

  • Luo L, Wang P, Lin L, Luan T, Ke L, Tam NFY (2014) Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae. Process Biochem 49:1723–1732

    CAS  Google Scholar 

  • Lyu Y, Zheng W, Zheng T, Tian Y (2014) Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS One 9(7)

  • Mallick S, Chakraborty J, Dutta TK (2011) Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Crit Rev Microbiol 37(1):64–90

    CAS  PubMed  Google Scholar 

  • Mao J, Guan W (2016) Fungal degradation of polycyclic aromatic hydrocarbons (PAHs) by Scopulariopsis brevicaulis and its application in bioremediation of PAH-contaminated soil. Acta Agriculturae Scandinavica Sect B Soil Plant Sci 66(5):399–405

    CAS  Google Scholar 

  • Mardani G, Mahvi AH, Hashemzadeh-Chaleshtori M, Naseri S, Dehghani MH, Ghasemi-Dehkordi P (2017) Application of genetically engineered dioxygenase producing Pseudomonas putida on decomposition of oil from spiked soil. Jundishapur J Nat Pharm Prod 12(3):64313

    Google Scholar 

  • Margesin R, Schinner F (2001) Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an Alpine glacier skiing area. Appl Environ Microbiol 67(7):3127–3133. https://doi.org/10.1128/aem.67.7.3127-3133.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínková L, Uhnáková B, Pátek M, Nešvera J, Ren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177

    PubMed  Google Scholar 

  • Meador JP, McCarty LS, Escher BI et al (2008) The tissue-residue approach for toxicity assessment: concepts, issues, application, and recommendations. J Environ Monit 10:1486–1498

    CAS  PubMed  Google Scholar 

  • Meckenstock RU, Safinowski M, Griebler C (2004) Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 49:27–36

    CAS  PubMed  Google Scholar 

  • Meng Y, Liu X, Lu S, Zhang T, Jin B, Wang Q, Tang Z, Liu Y, Guo X, Zhou J, Xi B (2019) A review on occurrence and risk of polycyclic aromatic hydrocarbons (PAHs) in lakes of China. Sci Total Environ 651(2):2497–2506

    CAS  PubMed  Google Scholar 

  • Menn FM, Applegate BM, Sayler GS (1993) NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids. Appl Environ Microbiol 59(6):1938–1942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer S, Moser R, Neef A, Stah U, Kampfer P (1999) Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiology 145:1731–1741

    CAS  PubMed  Google Scholar 

  • Mineki S, Suzuki K, Iwata K, Nakajima D, Goto S (2015) Degradation of polyaromatic hydrocarbons by fungi isolated from soil in Japan. Polycycl Aromat Compd 35:120–128

    CAS  Google Scholar 

  • Mishra S, Singh SN (2014) Biodegradation of benzo(a)pyrene mediated by catabolic enzymes of bacteria. Int J Environ Sci Technol 11:1571–1580

    CAS  Google Scholar 

  • Mishra S, Lal B, Jyot J, Rajan S, Khanna S (1999) Field study: in situ bioremediation of oily sludge contaminated land using oilzapper. In: Bishop D (Ed) Proceedings of hazardous and industrial wastes. Technomic Publishing Co. Inc, Pennsylvania, pp 177–186

  • Mishra S, Jyot J, Kuhad RC, Lal B (2001a) Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67:1675–1681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra V, Lal R, Srinivasan (2001b) Enzymes and operons mediating xenobiotic degradation in bacteria. Crit Rev Microbiol 27:133–166

    CAS  PubMed  Google Scholar 

  • Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 70(1):340–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller J, Cerniglia C, Pritchard P (1997) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Crawford D, Crawford R (eds) Bioremediation: principles and practices. Cambridge University Press, New York, pp 125–194

    Google Scholar 

  • Nakajima D, Yagishita M (2018) Carcinogenicity/mutagenicity. In: Hayakawa K (ed) Polycyclic aromatic hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-10-6775-4_18

    Chapter  Google Scholar 

  • National Academy of Sciences [NAS] (1971) Particulate polycyclic aromatic matter. National Academy of Sceinces, Washington, DC

    Google Scholar 

  • Nzila A, Ramirez CO, Musa MM, Sankara S, Basheer C, Li QX (2018) Pyrene biodegradation and proteomic analysis in Achromobacter xylosoxidans, PY4 strain. Int Biodeter Biodegr. https://doi.org/10.1016/j.ibiod.2018.03.014

    Article  Google Scholar 

  • Okai M, Kihara I, Yokoyama Y, Ishida M, Urano N (2015) Isolation and characterization of benzo [a] pyrene-degrading bacteria from the Tokyo Bay area and Tama River in Japan. FEMS Microbiol Lett 362(18):143

    Google Scholar 

  • Pandey AK, Chaudhary P, Singh SB, Arora A, Kumar K, Chaudhry S, Nain L (2012) Deciphering the traits associated with PAH degradation by a novel Serratia marcesencs L-11 strain. J Environ Sci Health 47(5):755–765

    CAS  Google Scholar 

  • Parales RE, Lee K, Resnick SM, Jiang HY, Lessner DJ, Gibson DT (2000) Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme. J Bacteriol 182:1641–1649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JW, Crowley DE (2006) Dynamic changes in nahAc gene copy numbers during degradation of naphthalene in PAH contaminated soils. Appl Microbiol Biotechnol 72:1322–1329

    CAS  PubMed  Google Scholar 

  • Patnaik P (2007) A comprehensive guide to the properties of hazardous chemical substances, 2nd edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Pelaez AI, Lores I, Sotres A, Mendez-Garcia C, Fernandez-Velarde C, Santos JA, Gallego JLR, Sanchez J (2013) Design and field-scale implementation of an “on site” bioremediation treatment in PAH-polluted soil. Environ Pollut 181:190–199

    CAS  PubMed  Google Scholar 

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    CAS  PubMed  Google Scholar 

  • Peng T, Luo A, Kan J, Liang L, Huang T, Hu Z (2018) Identification of a ring-hydroxylating dioxygenases capable of anthracene and Benz[a] anthracene oxidization from Rhodococcus sp. P14. J Mol Microbiol Biotechnol 28:183–189

    CAS  PubMed  Google Scholar 

  • Perera FP, Rauh V, Tsai WY, Kinney P, Camann D, Barr D, Bernert T, Garfinkel R, Tu YH, Diaz D, Dietrich J, Whyatt RM (2003) Effects of transplacental exposure to environmental pollutants on birth outcomes in a multi-ethnic population. Environ Health Perspect 111:201–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Llano Y, Martínez-Ávila L, Batista-García RA (2018) Omics approaches: impact on bioremediation techniques. In: Prasad R, Aranda E (eds) Approaches in bioremediation. Nanotechnology in the life sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02369-0_3

    Chapter  Google Scholar 

  • Pinyakong O, Habe H, Omori T (2003) The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 49(1):1–19

    CAS  PubMed  Google Scholar 

  • Potin O, Veignie E, Rafin C (2004) Biodegradation of polycyclic aromatic hydrocarbon by Cladosporium sphaerospermum isolated from an aged (PAHs) contaminated soil. FEMS Microbiol Eco 51(1):71–78. https://doi.org/10.1016/j.femsec.2004.07.013

    Article  CAS  Google Scholar 

  • Pozdnyakova N, Dubrovskaya E, Chernyshova M, Makarov O, Golubev S, Balandina S, Turkovskaya O (2018) The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus. Fungal Biol 122(5):363–372

    CAS  PubMed  Google Scholar 

  • Pritchard PH, Mueller JG, Rogers JC, Kremer FV, Glaser JA (1992) Oil spill bioremediation: experiences, lessons and results from the Exxon Veldez oil pill Alaska. Biodegradation 3:109–132

    Google Scholar 

  • Qin W, Fan F, Zhu Y, Huang X, Ding A, Liu X, Dou J (2018) Anaerobic biodegradation of benzo(a)pyrene by a novel Cellulosimicrobium cellulans CWS2 isolated from polycyclic aromatic hydrocarbon-contaminated soil. Braz J Microbiol 49(2):258–268

    CAS  PubMed  Google Scholar 

  • Rabodonirina S, Rasolomampianina R, Krier F, Drider D, Merhaby D, Net S, Ouddane B (2019) Degradation of fluorene and phenanthrene in PAHs-contaminated soil using Pseudomonas and Bacillus strains isolated from oil spill sites. J Environ Manage 232:1–7

    CAS  PubMed  Google Scholar 

  • Randhawa M, Kaushal J (2014) Bioremediation through Oilzapper and Oilivorous-S technologies: a review. Eng Sci Int Res J 2(1):29–32

    Google Scholar 

  • Reddy KR, Adams JA (2015) Sustainable remediation of contaminated sites. Momentum Press, New York

    Google Scholar 

  • Ripp S, Nivens DE, Ahn Y, Werner C, Jarrel J, Easter JP, Cox CD, Burlage RS, Sayler GS (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34:846–853

    CAS  Google Scholar 

  • Rockne KJ, Strand SE (2001) Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture. Water Res 35:291–299

    CAS  PubMed  Google Scholar 

  • Rockne KJ, Chee-Sanford JC, Sandford RA, Hedlund BP, Staley JT (2000) Anaerobic naphthalene degradation by microbial pure cultures under nitrate reducing conditions. Appl Environ Microbiol 66:1595–1601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Safonova E, Kvitko K, Kuschk P, Möder M, Reisser W (2005) Biodegradation of phenanthrene by the green alga scenedesmus obliquus ES-55. Eng Life Sci 5(3):234–239

    CAS  Google Scholar 

  • Saito A, Iwabuchi T, Harayama S (1999) Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp KP7. Chemosphere 38:1331–1337

    CAS  PubMed  Google Scholar 

  • Saito A, Iwabuchi T, Harayame S (2000) A novel phenanthrene dioxygenase from Nocardioides sp strain KP7: expression in E coli. J Bacteriol 182(8):2134–2141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakshi Singh SK, Haritash AK (2019) Polycyclic aromatic hydrocarbons: soil pollution and remediation. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-019-02414-3

    Article  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20(6):243–248

    CAS  PubMed  Google Scholar 

  • Sangkharak K, Choonut A, Rakkan T, Prasertsan P (2020) The degradation of phenanthrene, pyrene, and fluoranthene and its conversion into medium-chain-length polyhydroxyalkanoate by novel polycyclic aromatic hydrocarbon-degrading bacteria. Curr Microbiol. https://doi.org/10.1007/s00284-020-01883-x

    Article  PubMed  Google Scholar 

  • Santos EC, Jacques RJS, Bento FM, Peralba MDR, Selbach PA, Sa ELS, Camargo FAO (2008) Anthracene biodegradation and surface activity by an iron-stimulated Pseudomonas sp. Bioresour Technol 99:2644–2649

    CAS  PubMed  Google Scholar 

  • Sarma PM, Duraja P, Deshpande S, Lal B (2009) Degradation of pyrene by an enteric bacterium, Leclercia adecarboxylata PS4040. Biodegradation 21:59–69

    PubMed  Google Scholar 

  • Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155

    CAS  PubMed  Google Scholar 

  • Sayara T, Sarrà M, Sánchez A (2010) Effects of compost stability and contaminant concentration on the bioremediation of PAHs-contaminated soil through composting. J Hazard Mater 179:999–1006

    CAS  PubMed  Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11(3):286–289

    CAS  PubMed  Google Scholar 

  • Sayler GS, Perkins RE, Sherrill TW, Perkins BK, Reid MC, Shields MS, Kong HL, Davis JW (1983) Microcosm and experimental pond evaluation of microbial community response to synthetic oil contamination in freshwater sediments. Appl Environ Microbiol 46:211–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sayler GS, Cox CD, Burlage RS, Ripp S, Nivens DE, Werner C, Ahn Y, Matrubutham U (1999) Field release of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control. In: Flashner Y, Reuveny S, Fass R (eds) Novel approaches for bioremediation of organic pollution. Kluwer Academic/Plenum Publishers, New York, pp 242–254

    Google Scholar 

  • Schuler L, NíChadhain SM, Jouanneau Y, Meyer C, Zylstra GJ, Hols P, Agathos SN (2008) Characterization of a novel angular dioxygenase from fluorene-degrading Sphingomonas sp Strain LB126. Appl Environ Microbiol 74(4):1050–1057

    CAS  PubMed  Google Scholar 

  • Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6:278–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Šepič E, Bricelj M, Leskovsek H (1998) Degradation of fluoranthene by Pasteurella sp IFA and Mycobacterium sp PYR-1: isolation and identification of metabolites. J Appl Microbiol 85:746–754

    PubMed  Google Scholar 

  • Sharma D, Jain S (2019) Impact of intervention of biomass cookstove technologies and kitchen characteristics on indoor air quality and human exposure in rural settings of India. Environ Int 123:240–255

    CAS  PubMed  Google Scholar 

  • Shen FT, Lin JL, Huang CC, Ho YN, Arun AB, Young LS, Young CC (2009) Molecular detection and phylogenetic analysis of the catechol 1,2-dioxygenase gene from Gordonia spp. Syst Appl Microbiol 32(5):291–300

    CAS  PubMed  Google Scholar 

  • Sherrill TW, Sayler GS (1980) Phenanthrene biodegradation in freshwater environments. Appl Environ Microbiol 39:172–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shetty AR, Gannes V, Obi CC, Lucas S, Lapidus A, Cheng J, Goodwin LA, Samuel Pitluck S, Peters L, Mikhailova N, Teshima H, Han C, Tapia R, Land M, Hauser LJ, Kyrpides N, Ivanova N, Pagani I, Chain PSG, Denef VJ, Woyke T, Hickey WJ (2015) Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4. Stand Genomic Sci 10:55

    PubMed  PubMed Central  Google Scholar 

  • Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcour A, Suen W, Cruden DL, Gibson TD, Zylstra GJ (1993) Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127:31–37

    CAS  PubMed  Google Scholar 

  • Singh A, Ward OP (2004) Biodegradation and bioremediation: series: soil biology, vol 2. Springer-Verlag, New York

    Google Scholar 

  • Singleton DR, Ramirez LG, Aitken MD (2009) Characterization of a polycyclic aromatic hydrocarbon degradation gene cluster in a phenanthrene-degrading Acidovorax strain. Appl Environ Microbiol 75:2613–2620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spain JC, Veld PAV (1983) Adaptation of natural microbial communities to degradation of xenobiotic compounds: effects of concentration, exposure time, inoculum, and chemical structure. Appl Environ Microbiol 45:428–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spain JC, Pritchard PH, Bourquin AW (1980) Effects of adaptation on biodegradation rates in sediment/water cores from estuarine and freshwater environments. Appl Environ Microbiol 40:726–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart-Keil KG, Hohnstock AM, Drees KP, Herrick JB, Madsen EL (1998) Plasmids responsible for horizontal transfer of naphthalene catabolism genes between bacteria at a coal tar-contaminated site are homologous to pDTG1 from Pseudomonas putida NCIB 9816–4. Appl Environ Microbiol 64:3633–3640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Wang Y, Zang T, Wei J, Wu H, Wei C, Qiu G, Li F (2019) A biosurfactant-producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons. Bioresour Technol 281:421–428

    CAS  PubMed  Google Scholar 

  • Sutherland JB (1992) Detoxification of polycyclic aromatic hydrocarbons by fungi. J Ind Microbiol 9:53–62

    CAS  PubMed  Google Scholar 

  • Takáčová A, Smolinská M, Ryba J, Mackuľak T, Jokrllová J, Hronec P, Čík G (2014) Biodegradation of Benzo[a]Pyrene through the use of algae. Cent Eur J Chem 12(11):1133–1143

    Google Scholar 

  • Takizawa N, Kaida N, Torigoe S, Moritani T, Sawada T, Satoh S, Kiyohara H (1994) Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J Bacteriol 176(8):2444–2449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takizawa N, Iida T, Sawada T, Yamauchi K, Wang YW, Fukuda M, Kiyohara H (1999) Nucleotide sequences and characterization of genes encoding naphthalene upper pathway of Pseudomonas aeruginosa PaK1 and Pseudomonas putida OUS82. J Biosci Bioeng 87(6):721–731

    CAS  PubMed  Google Scholar 

  • Tao XQ, Lu GN, Dang Z, Yang C, Yi XY (2007) A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochem 42(3):401–408. https://doi.org/10.1016/j.procbio.2006.09.018

    Article  CAS  Google Scholar 

  • Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:200–204

    CAS  PubMed  Google Scholar 

  • Timmis KN, Steffan RJ, Unterman R (1994) Designing microorganisms for the treatment of toxic wastes. Annu Rev Microbiol 48:525–557

    CAS  PubMed  Google Scholar 

  • Tsai JC, Kumar M, Lin JG (2009) Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway. J Hazard Mater 164:847–855

    CAS  PubMed  Google Scholar 

  • Ugochukwu UC, Ochonogor A, Jidere CM, Agu C, Nkoloagu F, Ewoh J, Okwu-Delunzu VU (2018) Exposure risks to polycyclic aromatic hydrocarbons by humans and livestock (cattle) due to hydrocarbon spill from petroleum products in Niger-delta wetland. Environ Int 115:38–47. https://doi.org/10.1016/j.envint.2018.03.010

    Article  CAS  PubMed  Google Scholar 

  • USEPA (US Environmental Protection Agency) (2008) Polycyclic aromatic hydrocarbons (PAHs)—EPA fact sheet. National Center for Environmental Assessment, Office of Research and Development, Washington (DC)

    Google Scholar 

  • Valsala H, Prakash P, Elavarasi V, Pugazhendhi A, Thamaraiselvi K (2014) Article: isolation of Staphylococcus nepalensis for degradation of pyrene from diesel contaminated site. Int J Comput Appl 1:21–24

    Google Scholar 

  • Venkata MS, Nancharaiah YV, Flankentof FC, Wattiau P, Wuertz S, Wilderer PA (2002) Monitoring the conjugal transfer of plasmid PWWO from Pseudomonas putida in sequencing batch biofilm reactor. In: Proceedings of VAAM conference, Gottingen, Germany

  • Walker JD, Colwell RR (1975) Some effects of petroleum on estuarine and marine microorganisms. Can J Microbiol 21:305–313

    CAS  PubMed  Google Scholar 

  • Walker JD, Colwell RR, Petrakis L (1976) Biodegradation of petroleum by Cheasapeake Bay sediment bacteria. Can J Microbiol 22:423–428

    CAS  PubMed  Google Scholar 

  • Wassenberg DM, Di Giulio RT (2004) Synergistic embryotoxicity of polycyclic aromatic hydrocarbon aryl hydrocarbon receptor agonists with cytochrome P4501A inhibitors in Fundulus heteroclitus. Environ Health Perspect 112(17):1658–1664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wattiau P, Bastiaens L, Herwijnenc R, Daal L, Parsons JR, Renard M, Springael D, Cornelis GR (2001) Fluorene degradation by Sphingomonas sp LB126 proceeds through protocatechuic acid: a genetic analysis. Res Microbiol 152:861–872

    CAS  PubMed  Google Scholar 

  • White AJ, Bradshaw PT, Herring AH, Teitelbaum SL, Beyea J, Stellman SD, Steck SE, Mordukhovich I, Eng SM, Engel LS, Conway K, Hatch M, Neugut AI, Santella RM, Gammon MD (2016) Exposure to multiple sources of polycyclic aromatic hydrocarbons and breast cancer incidence. Environ Int. https://doi.org/10.1016/j.envint.2016.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Wick AF, Haus NW, Sukkariyah BF, Haering KC, Daniels WL (2011) Remediation of PAH-contaminated soils and sediments: a literature review. CSES Department Internal Research Document, Virginia Polytechnic Institute and State University, Blacksburg, VA

  • Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ Pollut 88(1):91–108

    CAS  PubMed  Google Scholar 

  • Working Group on Polycyclic Aromatic Hydrocarbons (WGPAH) (2001) Ambient air pollution by polycyclic aromatic hydrocarbons: position paper, 2001 Annexes. https://ec.europa.eu/environment/air/pdf/pp_pah.pdf

  • Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharm 206:73–93

    CAS  Google Scholar 

  • Ye JS, Yin H, Qiang J, Peng H, Qin HM, Zhang N, He BY (2011) Biodegradation of anthracene by Aspergillus fumigatus. J Hazard Mater 185:174–181

    CAS  PubMed  Google Scholar 

  • Zafra G, Absalón ÁE, Anducho-Reyes MÁ, Fernandez FJ, Cortés-Espinosa DV (2017) Construction of PAH-degrading mixed microbial consortia by induced selection in soil. Chemosphere 172:120–126

    CAS  PubMed  Google Scholar 

  • Zhang XX, Cheng SP, Zhu CJ, Sun SL (2006) Microbial PAH-degradation in soil: degradation pathways and contributing factors. Pedosphere 16(5):555–565

    CAS  Google Scholar 

  • Zhang GY, Ling JY, Sun HB, Luo J, Fan YY, Cui ZJ (2009) Isolation and characterization of a newly isolated polycyclic aromatic hydrocarbons-degrading Janibacter anophelis strain JY11. J Hazard Mater 172:580–586

    CAS  PubMed  Google Scholar 

  • Zhao HP, Wu QS, Wang L, Zhao XT, Gao HW (2009) Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai China. J Hazard Mater 164:863–869

    CAS  PubMed  Google Scholar 

  • Zhao HP, Liang SH, Yang X (2011) Isolation and characterization of catechol 2,3-dioxygenase genes from phenanthrene degraders Sphingomonas sp ZP1 and Pseudomonas sp ZP2. Environ Technol 33(15–16):1895–1901

    PubMed  Google Scholar 

  • Zheng ZM, Obbard JP (2003) Oxidation of polycyclic aromatic hydrocarbons by fungal isolates from oil contaminated refinery soil. Environ Sci Pollut Res 10:173–176

    CAS  Google Scholar 

  • Zhou NY, Fuenmayor SL, Williams PA (2001) nag genes of Ralstonia (formerly Pseudomonas) sp strain U2 encoding enzymes for gentisate catabolism. J Bacteriol 183:700–708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, He D, Li X, Zhang H, Zeng X, Cheng G (2013a) Isolation and characterization of naphthalene degrading strains, Pseudomonas sp CZ2 and CZ5. Afr J Microbiol Res 7(1):13–19

    Google Scholar 

  • Zhou Y, Wei J, Shao N, Wei D (2013b) Construction of a genetically engineered microorganism for phenanthrene biodegradation. J Basic Microbiol 53:188–194

    CAS  PubMed  Google Scholar 

  • Zhu L, Chen Y, Zhou R (2008) Distribution of poly aromatic hydrocarbons (PAHs) in water, sediments and soil in drinking water resources of Zhejiang province, China. J Hazard Mater 150:308–316. https://doi.org/10.1016/j.jhazmat.2007.04.102

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Ni X, Waigi MG, Liu J, SunK Gao Y (2016) Biodegradation of mixed PAHs by PAH-degrading endophytic bacteria. Int J Environ Res Public Health 13:805

    PubMed Central  Google Scholar 

  • Zwick TC, Foote EA, Pollack AJ (1997) Effects of nutrient addition during bioventing of fuel contaminated soils in an arid environment. In: Alleman BC, Leeson A (eds) In-situ and on site bioremediation. Battelle Press, Columbus, pp 403–409

    Google Scholar 

  • Zylstra GJ, Kim E (1997) Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biot 19:408–414

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help of Dr. R.K. Shukla, Librarian, DTU for his help in getting the relevant literature from time to time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Haritash.

Ethics declarations

Conflict of interest

The authors have no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. All the authors have agreed to the submission of the manuscript to World Journal of Microbiology & Biotechnology.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakshi, Haritash, A.K. A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch Microbiol 202, 2033–2058 (2020). https://doi.org/10.1007/s00203-020-01929-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01929-5

Keywords

Navigation