Archives of Microbiology

, Volume 200, Issue 7, pp 1037–1048 | Cite as

Cyanotrophic and arsenic oxidizing activities of Pseudomonas mendocina P6115 isolated from mine tailings containing high cyanide concentration

  • Alejandra Miranda-Carrazco
  • Juan M. Vigueras-Cortés
  • Lourdes Villa-Tanaca
  • César Hernández-Rodríguez
Original Paper


Mine tailings and wastewater generate man-made environments with several selective pressures, including the presence of heavy metals, arsenic and high cyanide concentrations, but severe nutritional limitations. Some oligotrophic and pioneer bacteria can colonise and grow in mine wastes containing a low concentration of organic matter and combined nitrogen sources. In this study, Pseudomonas mendocina P6115 was isolated from mine tailings in Durango, Mexico, and identified through a phylogenetic approach of 16S rRNA, gyrB, rpoB, and rpoD genes. Cell growth, cyanide consumption, and ammonia production kinetics in a medium with cyanide as sole nitrogen source showed that at the beginning, the strain grew assimilating cyanide, when cyanide was removed, ammonium was produced and accumulated in the culture medium. However, no clear stoichiometric relationship between both nitrogen sources was observed. Also, cyanide complexes were assimilated as nitrogen sources. Other phenotypic tasks that contribute to the strain’s adaptation to a mine tailing environment included siderophores production in media with moderate amounts of heavy metals, arsenite and arsenate tolerance, and the capacity of oxidizing arsenite. P. mendocina P6115 harbours cioA/cioB and aoxB genes encoding for a cyanide-insensitive oxidase and an arsenite oxidase, respectively. This is the first report where P. mendocina is described as a cyanotrophic and arsenic oxidizing species. Genotypic and phenotypic tasks of P. mendocina P6115 autochthonous from mine wastes are potentially relevant for biological treatment of residues contaminated with cyanide and arsenic.


Cyanide Arsenic Mine wastes Pseudomonas 



We thank Ricardo Monterrubio-López and Luis Vázquez-Méndez for their support of determinations of metal concentration and electrical conductivity, respectively. We also thank First Majestic Plata SA de CV for the facilities for sampling. AMC thanks Consejo Nacional de Ciencia y Tecnologia (CONACYT) for the graduate scholarship awarded and Beca de Estimulo Institucional de Formación de Investigadores-Instituto Politécnico Nacional (IPN) for a scholarship complement. LVT, CHR, and JMVC are fellows of Estimulos al Desempeño de Investigadores-IPN, Comisión de Operación y Fomento de Actividades Académicas-IPN and Sistema Nacional de Investigadores-CONACYT. This work was supported by Secretaria de Investigación y Posgrado-IPN with Grants 20161850 and 20171849.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

203_2018_1514_MOESM1_ESM.pdf (183 kb)
Supplementary material 1 (PDF 182 KB)


  1. Akcil A, Mudder T (2003) Microbial destruction of cyanide wastes in gold mining: process review. Biotechnol Lett 25:445–450CrossRefPubMedGoogle Scholar
  2. Akcil A, Karahan AG, Ciftci H, Sagdic O (2003) Biological treatment of cyanide by natural isolated bacteria (Pseudomonas sp.). Miner Eng 16:643–649CrossRefGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  4. Atlas R (2010) Handbook of microbiological media. ASM Press, Washington, D.C.CrossRefGoogle Scholar
  5. Babu GRV, Wolfram JH, Chapatwala KD (1992) Conversion of sodium cyanide in carbon dioxide and ammonia by immobilized cells of Pseudomonas putida. J Ind Microbial 9:235–238CrossRefGoogle Scholar
  6. Bahar MM, Megharaj M, Naidu R (2012) Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation 23:803–812CrossRefPubMedGoogle Scholar
  7. Borisov VB, Gennis RB, Hemp J, Verkhovsky MI (2011) The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta 1807:1398–1413CrossRefPubMedPubMedCentralGoogle Scholar
  8. Braud A, Jezequel K, Hoegy F, Lebeau T, Schalk IJ (2009) New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine–iron uptake pathway. Environ Microbiol 11:1079–1091CrossRefPubMedGoogle Scholar
  9. Campanella JJ, Bitincka L, Smalley J (2003) MatGat: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4:1–4CrossRefGoogle Scholar
  10. Chang JS, Kim YH, Kim KW (2008) The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold–silver mines in the Republic of Korea. Appl Microbiol Biotechnol 80:155–165CrossRefPubMedGoogle Scholar
  11. Cunningham L, Williams HD (1995) Isolation and characterization of mutants defective in the cyanide-insensitive respiratory pathway of Pseudomonas aeruginosa. J Bacteriol 177:432–438CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cunningham L, Pitt M, Williams HD (1997) The cioAB genes from Pseudomonas aeruginosa code for a novel cyanide-insensitive terminal oxidase related to the cytochrome bd quinol oxidases. Mol Microbiol 24:579–591CrossRefPubMedGoogle Scholar
  13. Dash RR, Gaur A, Balamajumder C (2009) Cyanide in industrial wastewaters and its removal: A review on biotreatment. J Hazard Mater 163:1–11CrossRefPubMedGoogle Scholar
  14. Dauga C (2002) Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. Int J Syst Evol Micr 52:531–547CrossRefGoogle Scholar
  15. Dubey SK, Holmes DS (1995) Biological cyanide destruction mediated by microorganisms. World J Microb Biot 11:257–265CrossRefGoogle Scholar
  16. Dzombak DA, Ghosh RS, Young TC (2005) Physical–chemical properties and reactivity of cyanide in water and soil. In: Dzombak DA, Ghosh RS, Wong-Chong GM (eds) Cyanide in water and soil: chemistry, risk and management, 1st edn. CRC Press, Boca Raton, pp 57–92Google Scholar
  17. Ebbs S (2004) Biological degradation of cyanide compounds. Curr Opin Biotechnol 15:231–236CrossRefPubMedGoogle Scholar
  18. Eisler R, Wiemeyer SN (2004) Cyanide hazards to plants and animals from gold mining and related water issues. Rev Environ Contam Toxicol 183:21–54PubMedGoogle Scholar
  19. Epstein J (1947) Estimation of microquantities of cyanide. Anal Chem 19:272–274CrossRefGoogle Scholar
  20. Galtier N, Gouy M, Gautier C (1996) SEA VIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. CABIOS 12:543–548PubMedGoogle Scholar
  21. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E (2015) Phylogenomics and systematics in Pseudomonas. Front Microbiol. PubMedPubMedCentralCrossRefGoogle Scholar
  22. Grigor’eva NV, Kondrat’eva TF, Krasil’nikova EN, Karavaĭko GI (2006) Mechanism of cyanide and thiocyanate decomposition by an association of Pseudomonas putida and Pseudomonas stutzeri strains. Mikrobiologiia 75:320–328Google Scholar
  23. Gupta N, Balomajumder C, Agarwal VK (2010) Enzymatic mechanism and biochemistry for cyanide degradation: a review. J Hazard Mater 176:1–13CrossRefPubMedGoogle Scholar
  24. Hamamura N, Macur RE, Korf S, Ackerman G, Taylor WP, Kozubal M, Reysenbach AL, Inskeep WP (2009) Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ Microbiol 11:421–431CrossRefPubMedGoogle Scholar
  25. Harris R, Knowles CJ (1983) Isolation and growth of a Pseudomonas species that utilizes cyanide as a source of nitrogen. J Gen Microbiol 129:1005–1011PubMedGoogle Scholar
  26. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192CrossRefGoogle Scholar
  27. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272CrossRefPubMedGoogle Scholar
  28. Huertas MJ, Luque-Almagro VM, Martinez-Luque M, Blasco R, Moreno-Vivián C, Castillo F, Roldán MD (2006) Cyanide metabolism of Pseudomonas pseudoalcaligenes CECT5344: role of siderophores. Biochem Soc T 34:152–155CrossRefGoogle Scholar
  29. Ibáñez MI, Cabello P, Luque-Almagro VM, Sáez LP, Olaya A, Sánchez de Medina V, Luque de Castro MD, Moreno-Vivián C, Roldán MD (2017) Quantitative proteomic analysis of Pseudomonas pseudoalcaligenes CECT5344 in response to industrial cyanide-containing wastewaters using liquid chromatography–mass spectrometry/mass spectrometry (LC–MS/MS). Plos One. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Joshi DN, Patel JS, Flora SJS, Kalia K (2008) Arsenic accumulation by Pseudomonas stutzeri and its response to some thiol chelators. Environ Health Prev Med 13:257–263CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kang MH, Park JM (1997) Sequential degradation of cyanide and phenol by commensal interaction between two microorganisms. J Chem Technol Biotechnol 69:226–230CrossRefGoogle Scholar
  32. Karavaiko GI, Kondrat’eva TF, Savari EE, Grigor’eva NV, Avakyan ZA (2000) Microbial degradation of cyanide and thiocyanate. Microbiology 69:167–173CrossRefGoogle Scholar
  33. Koksunan S, Vichitphan S, Laopaiboon L, Vichitphan K, Han J (2013) Growth and cyanide degradation of Azotobacter vinelandii in cyanide containing wastewater system. J Microbiol Biotechnol 23:572–578CrossRefPubMedGoogle Scholar
  34. Korte NE, Fernando Q (1991) A review of arsenic (III) in groundwater. Crit Rev Env Contr 21:1–39CrossRefGoogle Scholar
  35. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  36. Liu SX, Athar M, Lippai I, Waldren C, Hei TK (2001) Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc Natl Acad Sci 98:1643–1648CrossRefPubMedGoogle Scholar
  37. Logsdon MJ, Hagelstein K, Mudder T (1999) The Management of cyanide in gold extraction, first ed. International council on metals and the environment. ICME, British ColumbiaGoogle Scholar
  38. Lukasz D, Liwia R, Aleksandra M, Aleksandra S (2014) Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: Estimation of the physiological potential for arsenic mobilization. BioMed Res Int. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Luque-Almagro VM, Huertas MJ, Martínez-Luque M, Moreno-Vivián C, Roldán MD, García-Gil J, Castillo F, Blasco M (2005) Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl Environ Microb 71:940–947CrossRefGoogle Scholar
  40. Meeussen JCL, Keizer MG, de Haan FAM (1992) Chemical stability and decomposition rate of iron cyanide complexes in soil solutions. Environ Sci Technol 26:511–516CrossRefGoogle Scholar
  41. Mekuto L, Jackson VA, Ntwampe SKO (2013) Biodegradation of free cyanide using Bacillus sp. Consortium dominated by Bacillus safensis, licheniformis and tequilensis strains: a bioprocess supported solely with whey. J Bioremed Biodeg 18:1–7Google Scholar
  42. Mekuto L, Ntwampe SKO, Akcil A (2016) An integrated biological approach for treatment of cyanidation wastewater. Sci Total Environ 571:711–720CrossRefPubMedGoogle Scholar
  43. Mudder TI, Botz MM (2004) Cyanide and society: a critical review. Eur J Miner Process Environ Prot 1:62–74Google Scholar
  44. Muller D, Lievremont D, Simeonova DD, Hubert JC, Lett MC (2003) Arsenite oxidase aox genes from a metal resistant beta-proteobacterium. J Bacteriol 185:135–141CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Poll 180:99–212CrossRefGoogle Scholar
  46. Navarro-Noya YE, Hernández-Mendoza E, Morales-Jiménez J, Jan-Roblero J, Martínez-Romero E, Hernández-Rodríguez C (2012) Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings. Appl Soil Ecol 62:52–60CrossRefGoogle Scholar
  47. Neff JM (1997) Ecotoxicology of arsenic in marine environment. Environ Toxicol Chem 16:917–927Google Scholar
  48. O’Brien S, Hodgson DJ, Buckling A (2014) Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa. Proc Biol Sci. PubMedPubMedCentralCrossRefGoogle Scholar
  49. Patel PC, Goulhen F, Boothman C, Gault AG, Charnock JM, Kalia K, Lloyd JR (2007) Arsenate detoxification in a Pseudomonas hypertolerant to arsenic. Arch Microbiol 187:171–183CrossRefPubMedGoogle Scholar
  50. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  51. Quesada A, Guijo MA, Merchán F, Blázquez B, Igeño MI, Blasco R (2007) Essential role of cytochrome bd-related oxidase in cyanide resistance of Pseudomonas pseudoalcaligenes CECT544. Appl Environ Microbiol 73:5118–5124CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149CrossRefPubMedGoogle Scholar
  53. Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574CrossRefPubMedGoogle Scholar
  54. Rathnayake IVN, Mallavarapu M, Krishnamurti GSR, Nanthi SB, Ravi N (2013) Heavy metal toxicity to bacteria—are the existing growth media accurate enough to determine heavy metal toxicity? Chemosphere 90:1195–1200CrossRefPubMedGoogle Scholar
  55. Rehman A, Butt SA, Hasnain S (2010) Isolation and characterization of arsenite oxidizing Pseudomonas lubricans and its potential use in bioremediation of wastewater. Afr J Biotechnol 9:1493–1498CrossRefGoogle Scholar
  56. Relman DA (1993) Universal bacterial 16S rDNA amplification and sequencing. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiDOIology: principles and applications. ASM Press, Washington, D.C, pp 489–495Google Scholar
  57. Rittle J, Peters JC (2016) Proton-coupled reduction of an iron cyanide complex to methane and ammonia. Angew Chem Int Ed Engl 55:12262–12265CrossRefPubMedPubMedCentralGoogle Scholar
  58. Salmassi TM, Venkateswaren K, Satomi M, Nealson K, Newman DK, Hering JG (2002) Oxidation of arsenite by Agrobacterium albertimagni, AOL15, sp. nov., isolated from Hot Creek, California. Geomicrobiol J 19:53–66CrossRefGoogle Scholar
  59. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56CrossRefPubMedGoogle Scholar
  60. Secretaria de Medio Ambiente y Recursos Naturales (2004) Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1-2004, que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. Secretaria de Medio Ambiente y Recursos Naturales, MéxicoGoogle Scholar
  61. Sistema Meteorológico Nacional (2013) Informe anual. Accesed 25 Nov 2013
  62. Sumi D, Himeno S (2012) Role of arsenic (+ 3 oxidation state) methyltransferase in arsenic metabolism and toxicity. Biol Pharm Bull 35:1870–1875CrossRefPubMedGoogle Scholar
  63. Sun W, Alvarez RS, Field JA (2010) The role of denitrification on arsenite oxidation and arsenic mobility in an anoxic sediment column model with activated alumina. Biotechnol Bioeng 107:786–794CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tambong J, Xu R, Bromfield E (2016) Pseudomonas canadensis sp. nov., a biological control agent isolated from a field plot under long-term mineral fertilization. Int J Syst Evol Microbiol 67:889–895CrossRefGoogle Scholar
  65. Tayeb LA, Ageron E, Grimont F, Grimont PAD (2005) Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 156:763–773CrossRefGoogle Scholar
  66. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  67. Turner AW (1949) Bacterial oxidation of arsenite. Nature 164:76–77CrossRefPubMedGoogle Scholar
  68. Visser WJF (1993) Contaminated land policies in some industrialised countries. Technical Soil Protection Committee (TCP), The HagueGoogle Scholar
  69. Vogel A, Svehla G (1979) Vogel´s textbook of macro and semimicro qualitative inorganic analysis. Longman, LondonGoogle Scholar
  70. Watanabe A, Yano K, Ikebukuro K, Karube I (1998) Cyanide hydrolysis in a cyanide degrading bacterium, Pseudomonas stutzeri AK61, by cyanidase. Microbiology 144:1677–1682CrossRefPubMedGoogle Scholar
  71. Weeger W, Lievremont D, Perret M, Lagarde F, Hubert JC, Leroy M, Lett MC (1999) Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12:141–149CrossRefPubMedGoogle Scholar
  72. Zelaya-Molina LX, Hernández-Soto LM, Guerra-Camacho JE, Monterrubio-López R, Patiño-Siciliano A, Villa-Tanaca L, Hernández-Rodríguez C (2016) Ammonia-oligotrophic and diazotrophic heavy metal-resistant Serratia liquefaciens strains from pioneer plants and mine tailings. Microb Ecol 72:324–346CrossRefPubMedGoogle Scholar
  73. Zeng XC, Guoji E, Wang J, Wang N, Chen X, Mu Y, Li H, Yang Y, Liu Y, Wang Y (2016) Functional characterization and unique diversity of genes and microorganisms involved in arsenite oxidation from the tailings of a realgar mine. Appl Environ Microbiol. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhang Z, Yin N, Cai X, Wang Z, Cui Y (2016) Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China. J Environ Syst 47:165–173Google Scholar
  75. Zimmerman AR, Kang DH, Ahn MY, Hyun S, Banks MK (2007) Influence of a soil enzyme on iron-cyanide complex speciation and mineral adsorption. Chemosphere 70:1044–1051CrossRefPubMedGoogle Scholar
  76. Zlosnik JEA, Tavankar GR, Bundy JG, Mossialos D, O’Toole R, Williams HD (2006) Investigation of the physiological relationship between the cyanide-insensitive oxidase and cyanide production in Pseudomonas aeruginosa. Microbiology 152:1407–1415CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Microbiología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCd. MéxicoMexico
  2. 2.Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Unidad DurangoInstituto Politécnico NacionalDurangoMexico

Personalised recommendations