Archives of Microbiology

, Volume 200, Issue 4, pp 525–540 | Cite as

Insights into the human oral microbiome

  • Digvijay Verma
  • Pankaj Kumar Garg
  • Ashok Kumar Dubey


Human oral cavity harbors the second most abundant microbiota after the gastrointestinal tract. The expanded Human Oral Microbiome Database (eHOMD) that was last updated on November 22, 2017, contains the information of approximately 772 prokaryotic species, where 70% is cultivable, and 30% belong to the uncultivable class of microorganisms along with whole genome sequences of 482 taxa. Out of 70% culturable species, 57% have already been assigned to their names. The 16S rDNA profiling of the healthy oral cavity categorized the inhabitant bacteria into six broad phyla, viz. Firmicutes, Actinobacteria, Proteobacteria, Fusobacteria, Bacteroidetes and Spirochaetes constituting 96% of total oral bacteria. These hidden oral micro-inhabitants exhibit a direct influence on human health, from host’s metabolism to immune responses. Altered oral microflora has been observed in several diseases such as diabetes, bacteremia, endocarditis, cancer, autoimmune disease and preterm births. Therefore, it becomes crucial to understand the oral microbial diversity and how it fluctuates under diseased/perturbed conditions. Advances in metagenomics and next-generation sequencing techniques generate rapid sequences and provide extensive information of inhabitant microorganisms of a niche. Thus, the retrieved information can be utilized for developing microbiome-based biomarkers for their use in early diagnosis of oral and associated diseases. Besides, several apex companies have shown keen interest in oral microbiome for its diagnostic and therapeutic potential indicating a vast market opportunity. This review gives an insight of various associated aspects of the human oral microbiome.


Oral microbiome Human metagenome Dysbiosis Oral diseases Biofilm 



We are thankful to Science and Engineering Recruitment Board (SERB), Government of India, New Delhi, India for financial assistance under the SERB Young Scientist scheme (Registration No. SERB/LS-824/2013) while writing this article.

Compliance with ethical standards

Conflict of interest

None of the authors have any conflict of interests to declare.


  1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahn J, Chen CY, Hayes RB (2012) Oral microbiome and oral and gastrointestinal cancer risk. Cancer Causes Control 23:399–404PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alcaraz LD, Ferre PB, Rubio RC, Romero HA, Simon-Soro A, Pignatelli M, Mira A (2012) Identifying a healthy oral microbiome through metagenomics. Clin Microbiol Infect 18:54–57PubMedCrossRefGoogle Scholar
  4. Al-hebshi NN, Nasher AT, Maryoud MY et al (2017) Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci Rep 7:1834PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ambardar S, Gupta R, Trakroo D, Lal R (2016) High throughput sequencing chemistry. Indian J Microbiol 56:394–404PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aruni AW, Mishra A, Dou Y, Chioma O, Hamilton BN, Fletcher HM (2015) Filifactor alocis—a new emerging periodontal pathogen. Microbes Infect 17:517–530PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bagan J, Sarrion G, Jimenez Y (2010) Oral cancer: clinical features. Oral Oncol 46:414–417PubMedCrossRefGoogle Scholar
  8. Banas JA, Vickerman MM (2003) Glucan-binding proteins of the oral Streptococci. Crit Rev Oral Biol Med 14:89–99PubMedCrossRefGoogle Scholar
  9. Bashir A, Miskeen AY, Hazari YM et al (2016) Fusobacterium nucleatum inflammation and immunity: the fire within human gut. Tumor Biol 37:2805–2810CrossRefGoogle Scholar
  10. Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simon-Soro A, Pignatelli M, Mira A (2012) The oral metagenome in health and disease. The ISME J 6:46–56PubMedCrossRefGoogle Scholar
  11. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R et al (2013) An estimation of the number of cells in the human body. Ann Hum Biol 40:463–471PubMedCrossRefGoogle Scholar
  12. Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA et al (2006) Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci USA 103:732–737PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bik EM, Long CD, Armitage GC, Loomer P, Emerson J et al (2010) Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J 4:962–974PubMedPubMedCentralCrossRefGoogle Scholar
  14. Blaser MJ (2014) The microbiome revolution. J Clin Investig 124:4162–4165PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brown SA, Whiteley MA (2007) Novel exclusion mechanism for carbon resource partitioning in Aggregatibacter actinomycetemcomitans. J Bacteriol 189:6407–6414PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chakraborty S, Persaud V, Vanegas S, Gautier G, Esiobu N (2014) Analysis of the human oral microbiome of smokers and non-smokers using PCR-RFLP and ribotyping. Adv Microbiol 4:681–691CrossRefGoogle Scholar
  17. Chakravorty S, Helb D, Burday M, Connell N, Alland D (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 69:330–339PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen H, Jiang W (2014) Application of high-throughput sequencing in understanding human oral microbiome related with health and disease. Front Microbiol 5:508PubMedPubMedCentralGoogle Scholar
  19. Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE (2010) The Human Oral Microbiome database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database: J Biol Database Curation 2010:baq013CrossRefGoogle Scholar
  20. Chopyk J, Chattopadhyay S, Kulkarni P, Smyth EM, Hittle LE et al (2017) Temporal variations in cigarette tobacco bacterial community composition and tobacco-specific nitrosamine content are influenced by brand and storage conditions. Front Microbiol 8:358PubMedPubMedCentralCrossRefGoogle Scholar
  21. Colombo AV, da Silva CM, Haffajee A, Colombo AP (2006) Identification of oral bacteria associated with crevicular epithelial cells from chronic periodontitis lesions. J Med Microbiol 55:609–615PubMedCrossRefGoogle Scholar
  22. Contreras M, Costello EK, Hidalgo G, Magris M, Knight R, Dominguez-Bello MG (2010) The bacterial microbiota in the oral mucosa of rural Amerindians. Microbiology 156:3282–3287PubMedCrossRefGoogle Scholar
  23. Costalonga M, Herzberg MC (2014) The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett 162:22–38PubMedPubMedCentralCrossRefGoogle Scholar
  24. Crielaard W, Zaura E, Schuller AA, Huse SM, Montijn RC, Keijser BJ (2011) Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med Genom 4:22CrossRefGoogle Scholar
  25. Cummins D (2011) Clinical evidence for the superior efficacy of a dentifrice containing 8.0% arginine and calcium carbonate in providing instant and lasting relief of dentin hypersensitivity. J Clin Dent 22:97–99PubMedGoogle Scholar
  26. Dalwai F, Spratt DA, Pratten J (2007) Use of quantitative PCR and culture methods to characterize ecological flux in bacterial biofilms. J Clin Microbiol 45:3072–3076PubMedPubMedCentralCrossRefGoogle Scholar
  27. Darrene LN, Cecile B (2016) Experimental models of oral biofilms developed on inert substrates: a review of the literature. Bio Med Res Intern 7461047:1–8Google Scholar
  28. Dashper SG, Seers CA, Tan KH, Reynolds EC (2011) Virulence factors of the oral Spirochete Treponema denticola. J Dental Res 90:691–703CrossRefGoogle Scholar
  29. De Lillo A, Ashley FP, Palmer RM, Munson MA, Kyriacou L, Weightman AJ, Wade WG (2006) Novel subgingival bacterial phylotypes detected using multiple universal polymerase chain reaction primer sets. Oral Microbiol Immunol 21:61–68PubMedCrossRefGoogle Scholar
  30. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR et al (2010) The human oral microbiome. J Bacteriol 192:5002–5017PubMedPubMedCentralCrossRefGoogle Scholar
  31. Diaz PI, Zilm PS, Rogers AH (2002) Fusobacterium nucleatum supports the growth of Porphyromonas gingivalis in oxygenated and carbon-dioxide-depleted environments. Microbiology 148: 467–472PubMedCrossRefGoogle Scholar
  32. Downes J, Munson M, Wade WG (2003) Dialister invisus sp nov isolated from the human oral cavity. Int J Syst Evol Microbiol 53:1937–1940PubMedCrossRefGoogle Scholar
  33. Downes J, Vartoukian SR, Dewhirst FE, Izard J, Chen T et al (2009) Pyramidobacter piscolens gen. nov., sp. nov., a member of the phylum “Synergistetes” isolated from the human oral cavity. Int J Syst Evol Microbiol 59:972–980PubMedPubMedCentralCrossRefGoogle Scholar
  34. Du LD, Kolenbrander PE (2000) Identification of saliva regulated genes of Streptococcus gordonii DL1 by differential display using random arbitrarily primed PCR. Infect Immun 68:4834–4837PubMedPubMedCentralCrossRefGoogle Scholar
  35. Eisenberg T, Fawzy A, Nicklas W, Semmler T, Ewers C (2016) Phylogenetic and comparative genomics of the family Leptotrichiaceae and introduction of a novel fingerprinting MLVA for Streptobacillus moniliformis. BMC Genom 17:864CrossRefGoogle Scholar
  36. Ellen RP, Galimanas VB (2005) Spirochetes at the forefront of periodontal infections. Periodontol 2000 38:13–32CrossRefGoogle Scholar
  37. Faveri M, Mayer MPA, Feres M et al (2008) Microbiological diversity of generalized aggressive periodontitis by 16S rRNA clonal analysis. Oral Microbiol Immunol 23:112–118PubMedCrossRefGoogle Scholar
  38. Feehery GR, Yigit E, Oyola SO, Langhorst BW, Schmidt VT et al (2013) A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. Plos One 8:e76096PubMedPubMedCentralCrossRefGoogle Scholar
  39. Feng MS, Chinna K, Kqueen CY, Cheong NW, Zain RB et al (2017) The oral microbiome community variations associated with normal, potentially malignant disorders and malignant lesions of the oral cavity. Malaysian J Pathol 39:1–15Google Scholar
  40. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: An emergent form of bacterial life. Nat Rev Microbiol 14:563–575PubMedCrossRefGoogle Scholar
  41. Flynn KJ, Baxter KT, Schloss PD (2016) Metabolic and community synergy of oral bacteria in colorectal cancer. mSphere 1:e00102–e00116PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fourie NH, Wang D, Abey SK, Sherwin LB, Joseph PV, Rahim-Williams B, Ferguson EG, Henderson WA (2016) The microbiome of the oral mucosa in irritable bowel syndrome. Gut Microbes 7:286–301PubMedPubMedCentralCrossRefGoogle Scholar
  43. Galloway-Pena JR, Smith DP, Sahasrabhojane P, Wadsworth WD, Fellman BM et al (2017) Characterisation of oral and gut microbiome temporal variability in hospitalized cancer patients. Genome Med 9:21PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ganesan SM, Joshi V, Fellows M, Dabdoub SM, Nagaraja HN (2017) A tale of two risks: Smoking diabetes and the subgingival microbiome. ISME J 11:2075–2089PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ghannoum MA, Jurevic RJ, Mukherjee PK et al (2010) Characterisation of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6:e1000713PubMedPubMedCentralCrossRefGoogle Scholar
  46. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R et al (2014) Human genetics shape the gut microbiome. Cell 159:789–799PubMedPubMedCentralCrossRefGoogle Scholar
  47. Griffen AL, Beall CJ, Firestone ND, Gross EL, Difranco JM, Hardman JH, Vriesendorp B, Faust RA, Janies DA, Leys EJ (2011) CORE: A phylogenetically-curated 16S rDNA database of the core oral microbiome. PLoS One 6:e19051PubMedPubMedCentralCrossRefGoogle Scholar
  48. Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, Podar M, Leys EJ (2012) Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J 6:1176–1185PubMedCrossRefGoogle Scholar
  49. Gross EL, Leys EJ, Gasparovich SR, Firestone ND, Schwartzbaum JA, Janies DA et al (2010) Bacterial 16S sequence analysis of severe caries in young permanent teeth. J Clin Microbiol 48:4121–4128PubMedPubMedCentralCrossRefGoogle Scholar
  50. Han YP, Ikegami A, Rajanna C, Kawsar HI, Zhou Y et al (2005) Identification and characterisation of a novel adhesin unique to oral. Fusobacteria J Bacteriol 187:5330–5340PubMedCrossRefGoogle Scholar
  51. Haque MM, Bose T, Dutta A, Reddy CV, Mande SS (2015) CS-SCORE: Rapid identification and removal of human genome contaminants from metagenomic datasets. Genomics 106:116–121PubMedCrossRefGoogle Scholar
  52. Hasan NA, Young BA, Minard-Smith AT, Saeed K et al (2014) Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS One 9:e97699PubMedPubMedCentralCrossRefGoogle Scholar
  53. He X, Hu W, Kaplan CW, Guo L, Shi W et al (2012) Adherence to Streptococci facilitates Fusobacterium nucleatum integration into an oral microbial community. Microb Ecol 63:532–542PubMedCrossRefGoogle Scholar
  54. He J, Li Y, Cao Y, Xue L, Zhou X (2015) The oral microbiome diversity and its relation to human diseases. Folia Microbiol 60:69–80CrossRefGoogle Scholar
  55. Henderson G, Cox F, Kittelmann S, Miri VH, Zethof M, Noel SJ et al (2013) Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS One 8:e74787PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hooper SJ, Crean SJ, Lewis MAO, Spratt DA, Wade WG, Wilson MJ (2006) Viable bacteria present within oral squamous cell carcinoma tissue. J Clin Microbiol 44:1719–1725PubMedPubMedCentralCrossRefGoogle Scholar
  57. Horz HP (2015) Archaeal lineages within the human microbiome: absent rare or elusive? Life 5:1333–1345 (Klenk HP Adams MW Garrett RA eds)PubMedPubMedCentralCrossRefGoogle Scholar
  58. Huang S, Li Z, He T, Bo C, Chang J, Li L et al (2016) Microbiota-based signature of gingivitis treatments: a randomized study. Sci Rep 6:24705PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hugenholtz P, Tyson GW, Webb RI, Wagner AM, Blackall LL (2001) Investigation of candidate division TM7 a recently recognized major lineage of the domain bacteria with no known pure-culture representatives. Appl Environ Microbiol 67:411–419PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hunter SJ, Easton S, Booth V, Henderson B, Wade WG, Ward JM (2011) Selective removal of human DNA from metagenomic DNA samples extracted from dental plaque. J Basic Microbiol 51:442–446PubMedCrossRefGoogle Scholar
  61. Hyink O, Wescombe PA, Upton M, Ragland N, Burton JP, Tagg JR (2007) Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on a 190-kilobase transmissible megaplasmid in the oral probiotic strain Streptococcus salivarius K12. Appl Environ Microbiol 73:1107–1113PubMedCrossRefGoogle Scholar
  62. Jabra-Rizk MA, Falkler WA, Merz WG, Kelley JI, Baqui AAMA., Meiller TF (1999) Co-aggregation of Candida dubliniensis with Fusobacterium nucleatum. J Clin Microbiol 37:1464–1468PubMedPubMedCentralGoogle Scholar
  63. Jakubovics N, Kolenbrander P (2010) The road to ruin: the formation of disease-associated oral biofilms. Oral Dis 16:729–739PubMedCrossRefGoogle Scholar
  64. Jakubovics NS, Gill SR, Iobst SE, Vickerman MM, Kolenbrander PE (2008) Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by co-aggregation with Actinomyces naeslundii. J Bacteriol 190:3646–3657PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jalava J, Eerola E (1999) Phylogenetic analysis of Fusobacterium alocis and Fusobacterium sulci based on 16S rRNA gene sequences: proposal of Filifactor alocis (Cato Moore and Moore) comb nov and Eubacterium sulci (Cato Moore and Moore) comb nov. Int J Syst Bacteriol 49:1375–1379PubMedCrossRefGoogle Scholar
  66. Janus MM, Crielaard W, Volgenant CMC, van der Veen MH, Brandt BW, Krom BP (2017) Candida albicans alters the bacterial microbiome of early in vitro oral biofilms. J Oral Microbiol 9:1270613PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jenkinson HF, Lamont RJ (2005) Oral microbial communities in sickness and in health. Trends Microbiol 13:589–595PubMedCrossRefGoogle Scholar
  68. Jian W, Dong X (2002) Transfer of Bifidobacterium inopinatum and Bifidobacterium denticolens to Scardovia inopinata gen nov comb nov and Parascardovia denticolens gen nov comb nov respectively. Int J Syst Evol Microbiol 52:809–812PubMedGoogle Scholar
  69. Jiang W, Ling Z, Lin X, Chen Y, Zhang J, Yu J et al (2014) Pyrosequencing analysis of oral microbiota shifting in various caries states in childhood. Microb Ecol 67:962–969PubMedCrossRefGoogle Scholar
  70. Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M (2014) Metatranscriptomics of the human oral microbiome during health and disease. mBio 5:e01012–e01014PubMedPubMedCentralCrossRefGoogle Scholar
  71. Jumas-Bilak E, Jean-Pierre H, Carlier JP, Teyssier C, Bernard K, Gay B, Campos J, Morio F, Marchandin H (2005) Dialister micraerophilus sp nov and Dialister propionicifaciens sp nov isolated from human clinical samples. Int J Syst Evol Microbiol 55:2471–2478PubMedCrossRefGoogle Scholar
  72. Jumas-Bilak E, Roudiere L, Marchandin H (2009) Description of ‘Synergistetes’ phyl nov and emended description of the phylum ‘Deferribacteres’ and of the family Syntrophomonadaceae phylum ‘Firmicutes’. Int J Syst Evol Microbiol 59:1028–1035PubMedCrossRefGoogle Scholar
  73. Kampoo K, Teanpaisan R, Ledder RG, mcBain A (2014) Oral bacterial communities in individuals with type-2 diabetes who live in Southern Thailand. Appl Environ Microbiol 80:662–671PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kaplan CW, Lux R, Haake SK, Shi W (2009) The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multi-species biofilm. Mol Microbiol 71:35–47PubMedCrossRefGoogle Scholar
  75. Keijser BJ, Zaura E, Huse SM, van der Vossen JM, Schuren FH, Montijn RC, ten Cate JM, Crielaard W (2008) Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res 87:1016–1020PubMedCrossRefGoogle Scholar
  76. Kerr AR (2015) The oral microbiome and cancer. J Dental Hyg 89:20–23Google Scholar
  77. Kersters K, Lisdiyanti P, Kmagata K, Swings J (2006) The Family Acetobacteracea: The Genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In: Dworkin M, Falkow S Rosenberg E et al (eds) The prokaryotes 3rd edn vol 5 pp 163–200Google Scholar
  78. Kilian M, Chapple JLC, Hannig M et al (2016) The oral microbiome–An update for oral healthcare professionals. Br Dent J 221:657–666PubMedCrossRefGoogle Scholar
  79. Kistler JO, Arirachakaran P, Poovorawan Y, Dahlen G, Wade WG (2015) The oral microbiome in human immunodeficiency virus (HIV) positive individuals. J Med Microbiol 64:1094–1101PubMedCrossRefGoogle Scholar
  80. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ (2002) Communication among oral bacteria. Microbiol Mol Biol Rev 66:486–505PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kouzuma A, Kato S, Watanabe K (2015) Microbial interspecies interactions: Recent findings in syntrophic consortia. Front Microbiol 6:477PubMedPubMedCentralGoogle Scholar
  82. Krishnan K, Chen T, Paster BJ (2016) A practical guide to the oral microbiome and its relation to health and disease. Oral Dis 23:276–286PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kumar PS, Brooker MR, Dowd SE, Camerlengo T (2011) Target region selection is a critical determinant of community fingerprints generated by 16S pyrosequencing. PLoS One 6:e20956PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kumar J, Kumar M, Gupta S et al (2016) An improved methodology to overcome key issues in human fecal metagenomic DNA extraction. Gen Prot Bioinfo 14:371–378CrossRefGoogle Scholar
  85. Kurkivuori J, Salaspuro V, Kaihovaara P, Kari K, Rautemaa R, Gronroos L, Meurman JH, Salaspuro M (2007) Acetaldehyde production from ethanol by oral Streptococci. Oral Oncol 43:181–186PubMedCrossRefGoogle Scholar
  86. Lederberg J, Mccray A (2001) The scientist: ‘Ome Sweet’ Omics—a genealogical treasury of words. Sci 15:8Google Scholar
  87. Lee SE, Nam OH, Lee HS, Choi SC (2016) Diversity and homogeneity of oral microbiota in healthy Korean pre-school children using pyrosequencing. Acta odontol Scand 74:1–2CrossRefGoogle Scholar
  88. Lemon KP, Klepac-Ceraj V, Schiffer HK, Brodie EL, Lynch SV, Kolter R (2010) Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. mBio 1:e00129–00110PubMedPubMedCentralGoogle Scholar
  89. Lemos JA, Quivey RG, Koo H, Abranches J (2013) Streptococcus mutans: a new Gram-positive paradigm? Microbiology 159:436–445PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA (2014) Methanogenic archaea and human periodontal disease. Proc Natl Acad Sci USA 101:6176–6181CrossRefGoogle Scholar
  91. Lerner A, Aminov R, Matthias T (2016) Dysbiosis may trigger autoimmune diseases via inappropriate post-translational modification of host proteins. Front Microbiol 7:84PubMedPubMedCentralCrossRefGoogle Scholar
  92. Li J, Quinque D, Horz HP et al (2014) Comparative analysis of the human saliva microbiome from different climate zones: Alaska Germany and Africa. BMC Microbiol 14:316PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lim SM, Lee TK, Kim EJ, Park JH, Lee Y, Bae KS et al (2011) Microbial profile of asymptomatic and symptomatic teeth with primary endodontic infections by pyrosequencing. J Korean Acad Cons Dent 36:498–505CrossRefGoogle Scholar
  94. Lim Y, Totsika M, Morrison M, Punyadeera C (2017) Oral microbiome: A new biomarker reservoir for oral and oropharyngeal cancers. Theranostics 7:4313–4321PubMedPubMedCentralCrossRefGoogle Scholar
  95. Ling Z, Kong J, Jia P, Wei C, Wang Y, Pan Z et al (2010) Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microb Ecol 60:677–690PubMedCrossRefGoogle Scholar
  96. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322PubMedPubMedCentralCrossRefGoogle Scholar
  97. Liu B, Faller L, Klitgord N, Mazumdar V, Ghodsi M, Sommer DD et al (2012) Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One 7:e37919PubMedPubMedCentralCrossRefGoogle Scholar
  98. Loimaranta V, Jakubovics NS, Hytonen J, Finne J, Jenkinson HF, Stromberg N (2005) Fluid or surface-phase human salivary scavenger protein gp340 exposes different bacterial recognition properties. Infect Immun 73:2245–2252PubMedPubMedCentralCrossRefGoogle Scholar
  99. Long J, Cai Q, Steinwandel M, Hargreaves MK, Bordenstein SR, Blot WJ, Zheng W, Shu XO (2017) Association of oral microbiome with type 2 diabetes risk. J Periodont Res 52:636–643PubMedCrossRefPubMedCentralGoogle Scholar
  100. Mager DL, Ximenez-Fyvie LA, Haffajee AD, Socransky SS (2003) Distribution of selected bacterial species on intraoral surfaces. J Clin Periodontol 30:644–654PubMedCrossRefGoogle Scholar
  101. Mager DL, Haffajee AD, Devlin PM, Norris CM, Posner MR et al (2005) The salivary microbiota as a diagnostic indicator of oral cancer: A descriptive non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med 3:27PubMedPubMedCentralCrossRefGoogle Scholar
  102. Mantzourani M, Gilbert SC, Sulong HN, Sheehy EC, Tank S, Fenlon M, Beighton D (2009a) The isolation of Bifidobacteria from occlusal carious lesions in children and adults. Caries Res 43:308–313PubMedCrossRefGoogle Scholar
  103. Mantzourani M, Fenlon M, Beighton D (2009b) Association between Bifidobacteriaceae and the clinical severity of root caries lesions. Oral Microb Immun 24:32–37CrossRefGoogle Scholar
  104. Marsh PD (2003) Are dental diseases examples of ecological catastrophes? Microbiology 149:279–294PubMedCrossRefGoogle Scholar
  105. Mason MR, Preshaw PM, Nagaraja HN, Dabdoub SM, Rahman A, Kumar PS (2014) The subgingival microbiome of clinically healthy current and never smokers. ISME J 9:268–272PubMedPubMedCentralCrossRefGoogle Scholar
  106. Matsui R, Cvitkovitch D (2010) Acid tolerance mechanisms utilized by Streptococcus mutans. Future Microbiol 5:403–417PubMedPubMedCentralCrossRefGoogle Scholar
  107. Menon T, Gopalakrishnan SN, Balasubramanian R, Justin SR (2017) Characterisation of the human oral microbiome in patients with coronary artery disease using next-generation sequencing of 16S rRNA amplicons. Indian J Med Microbiol 35:101–104PubMedCrossRefGoogle Scholar
  108. Michaud DS, Joshipura K, Giovannucci E, Fuchs CS (2007) A prospective study of periodontal disease and pancreatic cancer in US male health professionals. J Natl Cancer Inst 99:171–175PubMedCrossRefGoogle Scholar
  109. Milos C, Marija BB, Jovana L, Jovan M, Miroslav PL (2013) Bacterial flora on the surface of oral squamous cell carcinoma. Arch Oncol 21:62–64CrossRefGoogle Scholar
  110. Mimee M, Citorik RJ, Lu TK (2016) Microbiome therapeutics – Advances and challenges. Adv Drug Deliv Rev 105:44–54PubMedPubMedCentralCrossRefGoogle Scholar
  111. Moon JH, Lee JH (2016) Probing the diversity of healthy oral microbiome with bioinformatics approaches. BMB Rep 49:662–670PubMedPubMedCentralCrossRefGoogle Scholar
  112. Moore LV, Moore WE (1994) Oribaculum catoniae gen nov sp nov; Catonella morbi gen nov sp nov; Hallella seregens gen nov sp nov; Johnsonella ignava gen nov sp nov; and Dialister pneumosintes gen nov comb nov nom rev anaerobic Gram-negative Bacilli from the human gingival crevice. Int J Syst Bacteriol 44:187–192PubMedCrossRefGoogle Scholar
  113. Nagy KN, Sonkodi I, Szoke I, Nagy E, Newman HN (1998) The microflora associated with human oral carcinomas. Oral Oncol 34:304–308PubMedCrossRefGoogle Scholar
  114. Ohlrich EJ, Cullinan MP, Leichter JW (2010) Diabetes periodontitis and the subgingival microbiota. J Oral Microbiol 2Google Scholar
  115. Olle B (2013) Medicines from microbiota. Nat Biotechnol 31:309–315PubMedCrossRefGoogle Scholar
  116. Palmer RJ Jr, Gordon SM, Cisar JO, Kolenbrander PE (2003) Co-aggregation-mediated interactions of Streptococci and Actinomyces detected in initial human dental plaque. J Bacteriol 185:3400–3409PubMedCrossRefGoogle Scholar
  117. Palmer RJ (2014) Composition and development of oral bacterial communities. Periodontol 64:10CrossRefGoogle Scholar
  118. Parahitiyawa NB, Jin LJ, Leung WK, Yam WC, Samaranayake LP (2009) Microbiology of odontogenic bacteremia: Beyond endocarditis. Clin Microbiol Rev 22:46–64PubMedPubMedCentralCrossRefGoogle Scholar
  119. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN et al (2001) Bacterial diversity in human subgingival plaque. J Bacteriol 183:3770–3783PubMedPubMedCentralCrossRefGoogle Scholar
  120. Pauly JL, Paszkiewicz G (2011) Cigarette smoke bacteria mold microbial toxins and chronic lung inflammation. J Oncol 129:1–13CrossRefGoogle Scholar
  121. Periasamy S, Kolenbrander PE (2010) Central role of the early colonizer Veillonella sp in establishing multispecies biofilm communities with initial middle and late colonizers of enamel. J Bacteriol 192:2965–2972PubMedPubMedCentralCrossRefGoogle Scholar
  122. Poveda-Roda R, Jimenez Y, Carbonell E, Gavalda C, Margaix-Munoz MM, Gracia Sarrion-Perez G (2008) Bacteremia originating in the oral cavity: a review. Med Oral Patol Oral Cir Bucal 13:E355–E362PubMedGoogle Scholar
  123. Pushalkar S, Ji X, Li Y, Estilo C, Yegnanarayana R et al (2012) Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC Microbiol 12:144PubMedPubMedCentralCrossRefGoogle Scholar
  124. Ribeiro AC, Matarazzo F, Faveri M, Zezell DM, Mayer MPA (2011) Exploring bacterial diversity of endodontic microbiota by cloning and sequencing 16S rRNA. J Endod 37:922–926PubMedCrossRefGoogle Scholar
  125. Rickard AH, Palmer RJ, Blehert DS, Campagna SR, Semmelhack MF, Egland PG et al (2006) Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol 60:1446–1456PubMedCrossRefGoogle Scholar
  126. Robertson D, Smith AJ (2009) The microbiology of the acute dental abscess. J Med Microbiol 58:155–162PubMedCrossRefGoogle Scholar
  127. Roy S, Trinchieri G (2017) Microbiota: a key orchestrator of cancer therapy. Nature Rev Cancer 17:271–285CrossRefGoogle Scholar
  128. Saito A, Inagaki S, Kimizuka R, Okuda K, Hosaka Y, Nakagawa T, Ishihara K (2008) Fusobacterium nucleatum enhances invasion of human gingival epithelial and aortic endothelial cells by Porphyromonas gingivalis. FEMS Immunol Med Microbiol 54:349–355PubMedCrossRefGoogle Scholar
  129. Sakamoto M, Siqueira JF, Jr Rocas IN, Benno Y (2008) Molecular analysis of the root canal microbiota associated with endodontic treatment failures. Oral Microbiol Immunol 23:275–281PubMedCrossRefGoogle Scholar
  130. Sapkota AR, Berger S, Vogel TM (2010) Human pathogens abundant in the bacterial metagenome of cigarettes. Environ Health Perspect 118:351PubMedCrossRefGoogle Scholar
  131. Schlafer S, Raarup MK, Wejse PL, Nyvad B, Stadler BM, Sutherland DS et al (2012) Osteopontin reduces biofilm formation in a multi-species model of dental biofilm. PLoS One 7:e41534PubMedPubMedCentralCrossRefGoogle Scholar
  132. Schmidt BL, Kuczynski J, Bhattacharya A, Huey B, Corby PM et al (2014) Changes in abundance of oral microbiota associated with oral cancer. PLoS ONE 9:e98741PubMedPubMedCentralCrossRefGoogle Scholar
  133. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864PubMedPubMedCentralCrossRefGoogle Scholar
  134. Scully C, Bagan J (2009) Oral squamous cell carcinoma: overview of current understanding of aetiopathogenesis and clinical implications. Oral Dis 15:388–399PubMedCrossRefGoogle Scholar
  135. Seed PC (2015) The Human Mycobiome. Cold Spring Harb Perspect Med 5:a019810PubMedCentralCrossRefGoogle Scholar
  136. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533PubMedPubMedCentralCrossRefGoogle Scholar
  137. Shade A, Handelsman J (2012) Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 14:4–12PubMedCrossRefGoogle Scholar
  138. Shi B, Wu T, McLean J et al (2016) The denture-associated oral microbiome in health and stomatitis. mSphere 1:e00215–e00216PubMedPubMedCentralCrossRefGoogle Scholar
  139. Siqueira JF, Fouad AF, Rocas IN (2012) Pyrosequencing as a tool for better understanding of human microbiomes. J Oral Microbiol 4:1–15CrossRefGoogle Scholar
  140. Takeshita T, Kageyama S, Furuta M, Tsuboi H, Takeuchi K (2016) Bacterial diversity in saliva and oral health-related conditions: The Hisayama study. Sci Rep 6:22164PubMedPubMedCentralCrossRefGoogle Scholar
  141. Tucker KL (2001) Methylated cytosine and the brain: a new base for neuroscience. Neuron 30:649–652PubMedCrossRefGoogle Scholar
  142. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett C, Knight R, Gordon JI (2007) The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 449:804–810PubMedPubMedCentralCrossRefGoogle Scholar
  143. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM et al (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Eng J Med 368:407–415CrossRefGoogle Scholar
  144. van der Ploeg JR (2005) Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol 187:3980–3989PubMedPubMedCentralCrossRefGoogle Scholar
  145. Vartoukian SR, Palmer RM, Wade WG (2009) Diversity and morphology of members of the phylum ‘Synergistetes’ in periodontal health and disease. Appl Environ Microbiol 75:3777–3786PubMedPubMedCentralCrossRefGoogle Scholar
  146. Vartoukian SR, Palmer RM, Wade WG (2010) Cultivation of a Synergistetes strain representing a previously uncultivated lineage. Environ Microbiol 12:916–928PubMedPubMedCentralCrossRefGoogle Scholar
  147. Vartoukian SR, Downes J, Palmer RM, Wade WG (2013) Fretibacterium fastidiosum gen nov sp nov isolated from the human oral cavity. Int J Syst Evol Microbiol 63:458–463PubMedCrossRefGoogle Scholar
  148. Wade WG (2013) The oral microbiome in health and disease. Pharmacol Res 69:137–143PubMedCrossRefGoogle Scholar
  149. Welch JLM, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG (2016) Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci USA 113:E791–E800CrossRefGoogle Scholar
  150. Whitmore SE, Lamont RJ (2014) Oral bacteria and cancer. PLoS Pathol 10:e1003933CrossRefGoogle Scholar
  151. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedPubMedCentralGoogle Scholar
  152. Wu J, Peters BA, Dominianni C, Zhang Y, Pei Z (2016) Cigarette smoking and the oral microbiome in a large study of American adults. ISME J 10:2435–2446PubMedPubMedCentralCrossRefGoogle Scholar
  153. Xie G, Chain PSG, Lo C, Liu KL, Gans J (2010) Community and gene composition of a human dental plaque microbiota obtained by metagenomic sequencing. Mol Oral Microbiol 25:391–405PubMedPubMedCentralCrossRefGoogle Scholar
  154. Ximenez-Fyvie LA, Haffajee AD, Socransky SS (2000) Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis. J Clin Periodontol 27:648–657PubMedCrossRefGoogle Scholar
  155. Xu H, Hao W, Zhou Q, Wang W, Xia Z, Liu C et al (2014) Plaque bacterial microbiome diversity in children younger than 30 months with or without caries prior to eruption of second primary molars. PLoS One 9:e89269PubMedPubMedCentralCrossRefGoogle Scholar
  156. Yamashita Y, Bowen WH, Burne RA, Kuramitsu HK (1993) Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immunol 61:3811–3817Google Scholar
  157. Yang B, Wang Y, Qian PY (2016) Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinfo 17:135CrossRefGoogle Scholar
  158. Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DTW (2013) Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev 26:781–791PubMedPubMedCentralCrossRefGoogle Scholar
  159. Zaura E, Keijser BJ, Huse SM, Crielaard W (2009) Defining the healthy ‘core microbiome’ of oral microbial communities. BMC Microbiol 9:259PubMedPubMedCentralCrossRefGoogle Scholar
  160. Zheng X, Je J, Wang L, Zhou S, Peng X et al (2017) Ecological effect of arginine on oral microbiota. Sci Rep 7:7206PubMedPubMedCentralCrossRefGoogle Scholar
  161. Zijnge V, van Leeuwen MBM, Degener JE, Abbas F, Thurnheer T et al (2010) Oral biofilm architecture on natural teeth. PLoS One 5:e9321PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Digvijay Verma
    • 1
  • Pankaj Kumar Garg
    • 2
  • Ashok Kumar Dubey
    • 3
  1. 1.Department of Environmental MicrobiologyBabasaheb Bhimrao Ambedkar UniversityLucknowIndia
  2. 2.University College of Medical Sciences and Guru Teg Bahadur HospitalUniversity of DelhiNew DelhiIndia
  3. 3.Division of Biological Sciences and EngineeringNetaji Subhas Institute of TechnologyNew DelhiIndia

Personalised recommendations