Archives of Microbiology

, Volume 200, Issue 2, pp 281–289 | Cite as

Effects of EGTA on cell surface structures of Corynebacterium glutamicum

  • Natalia Maria Theresia
  • Kohei Aida
  • Ayako Takada
  • Noritaka Iwai
  • Masaaki Wachi
Original Paper


The mycolic acid layer and S-layer of Corynebacterium glutamicum have been considered as permeability barriers against lytic agents. EGTA, a calcium chelator, inhibited C. glutamicum growth at relatively lower concentrations compared with other Gram-positive bacteria. We investigated the effect of EGTA on C. glutamicum cell surface structures. Simultaneous addition of EGTA and lysozyme resulted in cell lysis, whereas addition of these reagents separately had no such effect. Analysis of cell surface proteins showed that CspB, an S-layer protein, was released into the culture media and degraded to several sizes upon EGTA treatment. These findings suggest that EGTA treatment causes release and proteolysis of the CspB protein, resulting in increased cell surface permeability. FE-SEM visualization further confirmed alteration of cell surface structures in EGTA-treated cells. This is the first report suggesting the importance of calcium ions in cell surface integrity of C. glutamicum.


Cell wall Corynebacterium glutamicum CspB EGTA S-layer 



This work was supported in part by a Grant-in-Aid for challenging Exploratory Research (25660088, to M. W.) from the Japan Society for Promotion of Science. The authors thank the members of the Suzukakedai Material Analysis Division, Technical Department, Tokyo Institute of Technology for FE-SEM analysis.

Supplementary material

203_2017_1445_MOESM1_ESM.docx (538 kb)
Supplementary material 1 (DOCX 537 KB)


  1. Avila-Calderón ED, Araiza-Villanueva MG, Cancino-Diaz JC, López-Villegas EO, Sriranganathan N, Boyle SM, Contreras-Rodríguez A (2015) Roles of bacterial membrane vesicles. Arch Microbiol 197:1–10. doi: 10.1007/s00203-014-1042-7 CrossRefPubMedGoogle Scholar
  2. Baranova E, Fronzes R, Garcia-Pino A, Van Gerven N, Papapostolou D, Péhau-Arnaudet G, Pardon E, Steyaert J, Howorka S, Remaut H (2012) SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature 487:119–122. doi: 10.1038/nature11155 CrossRefPubMedGoogle Scholar
  3. Bayan N, Houssin C, Chami M, Leblon G (2003) Mycomembrane and S-layer: two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications. J Biotechnol 104:55–67. doi: 10.1016/S0168-1656(03)00163-9 CrossRefPubMedGoogle Scholar
  4. Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels -Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23:631–640. doi: 10.1016/j.copbio.2011.11.012 CrossRefPubMedGoogle Scholar
  5. Billman-Jacobe H, Wang L, Kortt A, Stewart D, Radford A (1995) Expression and secretion of heterologous proteases by Corynebacterium glutamicum. Appl Environ Microbiol 61:1610–1613PubMedPubMedCentralGoogle Scholar
  6. Chami M, Bayan N, Peyret JL, Gulik-Krzywicki T, Leblon G, Shechter E (1997) The S-layer protein of Corynebacterium glutamicum is anchored to the cell wall by its C-terminal hydrophobic domain. Mol Microbiol 23:483–492. doi: 10.1046/j.1365-2958.1997.d01-1868.x CrossRefPubMedGoogle Scholar
  7. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058. doi: 10.1016/j.cell.2007.11.028 CrossRefPubMedGoogle Scholar
  8. Daniel RA, Errington J (2003) Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113:767–776. doi: 10.1016/S0092-8674(03)00421-5 CrossRefPubMedGoogle Scholar
  9. Date M, Itaya H, Matsui H, Kikuchi Y (2006) Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett Appl Microbiol 42:66–70. doi: 10.1111/j.1472-765X.2005.01802.x CrossRefPubMedGoogle Scholar
  10. Domínguez DC, Guragain M, Patrauchan M (2015) Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium 57:151–165. doi: 10.1016/j.ceca.2014.12.006 CrossRefPubMedGoogle Scholar
  11. Freudl R (2017) Beyond amino acids: Use of the Corynebacterium glutamicum cell factory for the secretion of heterologous proteins. J Biotechnol. doi: 10.1016/j.jbiotec.2017.02.023 PubMedGoogle Scholar
  12. Gebhardt H, Meniche X, Tropis M, Krämer R, Daffé M, Morbach S (2007) The key role of the mycolic acid content in the functionality of the cell wall permeability barrier in Corynebacterineae. Microbiology 153:1424–1434. doi: 10.1099/mic.0.2006/003541-0 CrossRefPubMedGoogle Scholar
  13. Hansmeier N, Bartels FW, Ros R, Anselmetti D, Tauch A, Pühler A, Kalinowski J (2004) Classification of hyper-variable Corynebacterium glutamicum surface-layer proteins by sequence analysis and atomic force microscopy. J Biotechnol 112:177–193. doi: 10.1016/j.jbiotec.2004.03.020 CrossRefPubMedGoogle Scholar
  14. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172. doi: 10.1016/S0168-1656(03)00149-4 CrossRefPubMedGoogle Scholar
  15. Hermann T, Finkemeier M, Pfefferle W, Wersch G, Krämer R, Burkovski A (2000) Two-dimensional electrophoretic analysis of Corynebacterium glutamicum membrane fraction and surface proteins. Electrophoresis 21:654–659. doi: 10.1002/(SICI)1522-2683(20000201)21:3<654::AID-ELPS654>3.0.CO;2-1 CrossRefGoogle Scholar
  16. Hermann T, Pfefferie W, Baumann C, Busker E, Schaffer S, Bott M, Sahm H, Dusch N, Kalinowski J, Pühler A, Bendt AK, Krämer R, Burkovski A (2001) Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22:1712–1723. doi: 10.1002/1522-2683(200105)22:9<1712::AID-ELPS1712>3.0.CO;2-G CrossRefGoogle Scholar
  17. Hirasawa T, Wachi M (2017) Glutamate fermentation-2: Mechanism of l-glutamate overproduction in Corynebacterium glutamicum. Adv Biochem Eng Biotechnol 159:57–72. doi: 10.1007/10_2016_26 PubMedGoogle Scholar
  18. Hirasawa T, Wachi M, Nagai K (2000) A mutation in the Corynebacterium glutamicum ltsA gene causes susceptibility to lysozyme, temperature-sensitive growth, and l-glutamate production. J Bacteriol 182:2696–2701. doi: 10.1128/JB.182.10.2696-2701.2000 CrossRefGoogle Scholar
  19. Hirasawa T, Wachi M, Nagai K (2001) l-glutamate production by lysozyme-sensitive Corynebacterium glutamicum ltsA mutant strains. BMC Biotechnol 1:9. doi: 10.1186/1472-6750-1-9 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jaiswal R, Panda D (2009) Different assembly properties of Escherichia coli and Mycobacterium tuberculosis FtsZ: an analysis using divalent calcium. J Biochem 146:733–742. doi: 10.1093/jb/mvp120 CrossRefPubMedGoogle Scholar
  21. Joliff G, Mathieu L, Hahn V, Bayan N, Duchiron F, Renaud M, Shechter E, Leblon G (1992) Cloning and nucleotide sequence of the csp1 gene encoding PS1, one of the two major secreted proteins of Corynebacterium glutamicum: the deduced N-terminal region of PS1 is similar to the Mycobacterium antigen 85 complex. Mol Microbiol 6:2349–2362. doi: 10.1111/j.1365-2958.1992.tb01410.x CrossRefPubMedGoogle Scholar
  22. Kikuchi Y, Date M, Yokoyama K, Umezawa Y, Matsui H (2003) Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-transglutaminase by a cosecreted subtilisin-Like protease from Streptomyces albogriseolus. Appl Environ Microbiol 69:358–366. doi: 10.1128/AEM.69.1.358-366.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kikuchi Y, Date M, Itaya H, Matsui K, Wu LF (2006) Functional analysis of the twin-arginine translocation pathway in Corynebacterium glutamicum ATCC 13869. Appl Environ Microbiol 72:7183–7192. doi: 10.1128/AEM.01528-06 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kinoshita S, Udaka S, Shimono M (1957) Studies of the amino acid fermentation: production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol 3:193–205. doi: 10.2323/jgam.3.193 CrossRefGoogle Scholar
  25. Letek M, Ordóñez E, Vaquera J, Margolin W, Flärdh K, Mateos ML, Gil AJ (2008) DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum. J Bacteriol 190:3283–3292. doi: 10.1128/JB.01934-07 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Machaca K (2010) Ca2+ signaling, genes and the cell cycle. Cell Calcium 48:243–250. doi: 10.1016/j.ceca.2010.10.003 CrossRefGoogle Scholar
  27. Marienfeld S, Uhlemann EM, Schmid R, Krämer R, Burkovski A (1997) Ultrastructure of the Corynebacterium glutamicum cell wall. Antonie Van Leeuwenhoek 72:291–297. doi: 10.1023/A:1000578811089 CrossRefPubMedGoogle Scholar
  28. Matsuda Y, Itaya H, Kitahara Y, Theresia NM, Kutukova EA, Yomantas YAV, Date M, Kikuchi Y, Wachi M (2014) Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum. Microb Cell Fact 13:1–10. doi: 10.1186/1475-2859-13-56 CrossRefGoogle Scholar
  29. McBroom AJ, Kuehn MJ (2007) Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63:545–558. doi: 10.1111/j.1365-2958.2006.05522.x CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ochiai K, Takayama K, Kawamoto I (1987) Cytological changes in Corynebacterium glutamicum cell envelope structure caused by biotin deficiency. Actinomycetologica 1:31–42. doi: 10.3209/saj.1_31 CrossRefGoogle Scholar
  31. Ojima Y, Mohanadas T, Kitamura K, Nunogami S, Yajima R, Taya M (2017) Deletion of degQ gene enhances outer membrane vesicle production of Shewanella oneidensis cells. Arch Microbiol 199:415–423. doi: 10.1007/s00203-016-1315-4 CrossRefPubMedGoogle Scholar
  32. Payret JL, Bayan N, Joliff G, Gulik-Krzywicki T, Mathieu L, Schechter E, Leblon G (1993) Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol Microbiol 9:97–109. doi: 10.1111/j.1365-2958.1993.tb01672.x CrossRefGoogle Scholar
  33. Portevin D, De Sousa-D’Auria C, Houssin C, Grimaldi C, Chami M, Daffe M, Gullhot C (2004) A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci USA 101:314–319. doi: 10.1073/pnas.0305439101 CrossRefPubMedGoogle Scholar
  34. Prados-Rosales R, Baena A, Martinez LR, Luque-Garcia J, Kalscheuer R, Veeraraghavan U, Camara C, Nosanchuk JD, Besra GS, Chen B, Jimenez J, Glatman-Freedman A, Jacobs WR Jr, Porcelli SA, Casadevall A (2011) Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Invest 121:1471–1483. doi: 10.1172/JCI44261 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Prados-Rosales R, Weinrick BC, Piqué DG, Jacobs WR Jr, Casadevall A, Rodriguez GM (2014) Role for Mycobacterium tuberculosis membrane vesicles in iron acquisition. J Bacteriol 196(6):1250–1256. doi: 10.1128/JB.01090-13 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Puech V, Chami M, Lemassu A, Lanéelle MA, Schiffler B, Gounon P, Bayan N, Benz R, Daffé M (2001) Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365–1382. doi: 10.1099/00221287-147-5-1365 CrossRefPubMedGoogle Scholar
  37. Sahm H, Eggeling L, Eikmanns B, Krämer R (1996) Construction of l-lysine-, l-threonine-, and l-isoleucine-overproducing strains of Corynebacterium glutamicum. Ann N Y Acad Sci 782:25–39. doi: 10.1111/j.1749-6632.1996.tb40544.x CrossRefPubMedGoogle Scholar
  38. Sála M, Sleytr UB (2000) S-Layer proteins. J Bacteriol 182:859–868. doi: 10.1128/JB.182.4.859-868.2000 CrossRefGoogle Scholar
  39. Suzuki N, Watanabe K, Okibe N, Tsuchida Y, Inui M, Yukawa H (2009) Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum. Appl Microbiol Biotechnol 82:491–500. doi: 10.1007/s00253-008-1786-6 CrossRefPubMedGoogle Scholar
  40. Teramoto H, Watanabe K, Suzuki N, Inui M, Yukawa H (2011) High yield secretion of heterologous proteins in Corynebacterium glutamicum using its own Tat-type signal sequence. Appl Microbiol Biotechnol 91:677–687. doi: 10.1007/s00253-011-3281-8 CrossRefPubMedGoogle Scholar
  41. Udaka S (1960) Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J Bacteriol 79:754–755PubMedPubMedCentralGoogle Scholar
  42. Vertès AA (2013) Protein secretion systems of Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Corynebacterium glutamicum biology and biotechnology. Springer, Heidelberg, pp 351–379CrossRefGoogle Scholar
  43. Wachi M, Iwai N, Kunihasa A, Nagai K (1999) Irregular nuclear localization and anucleate cell production in Escherichia coli induced by Ca2+ chelator, EGTA. Biochemie 81:909–913. doi: 10.1016/S0300-9084(99)00204-7 CrossRefGoogle Scholar
  44. Walker SG, Karunaratne N, Ravenscroft N, Smit J (1994) Characterization of mutants of Caulobacter crescentus defective in surface attachment of the paracrystalline surface layer. J Bacteriol 176:6312–6323CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yang J, Yang S (2017) Comparative analysis of Corynebacterium glutamicum genomes: a new perspective for the industrial production of amino acids. BMC Genomics 18(Suppl 1):940. doi: 10.1186/s12864-016-3255-4 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yu XC, Margolin W (1997) Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO J 16:5455–5463. doi: 10.1093/emboj/16.17.5455 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yukawa H, Inui M, Vertès AA (2007a) Genomes and genome-level engineering of amino-acid producing bacteria. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering, microbiology monographs. Springer, Heidelberg, pp 349–401CrossRefGoogle Scholar
  48. Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertes AA, Inui M (2007b) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058. doi: 10.1099/mic.0.2006/003657-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
  2. 2.Biomaterials Analysis Division, Technical DepartmentTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations