Skip to main content
Log in

Genetic analysis of MA4079, an aldehyde dehydrogenase homolog, in Methanosarcina acetivorans

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

When Methanosarcina acetivorans grows on carbon monoxide (CO), it synthesizes high levels of a protein, MA4079, homologous to aldehyde dehydrogenases. To investigate the role of MA4079 in M. acetivorans, mutants lacking the encoding gene were generated and phenotypically analyzed. Loss of MA4079 had no effect on methylotrophic growth but led to complete abrogation of methylotrophic growth in the presence of even small amounts of CO, which indicated the mutant’s inability to acclimate to the presence of this toxic gas. Prolonged incubation with CO allowed the isolation of a strain in which the effect of MA4079 deletion is suppressed. The strain, designated Mu3, tolerated the presence of high CO partial pressures even better than the wild type. Immunological analysis using antisera against MA4079 suggested that it is not abundant in M. acetivorans. Comparison of proteins differentially abundant in Mu3 and the wild type revealed an elevated level of methyl-coenzyme M reductase and a decreased level of one isoform of carbon monoxide dehydrogenase/acetyl-coenzyme A synthase, which suggests that pleiotropic mutation(s) compensating for the loss of MA4079 affected catabolism. The data presented point toward a role of MA4079 to enable M. acetivorans to properly acclimate to CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE et al (1997) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Blaut M, Gottschalk G (1984) Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Eur J Biochem 141:217–222

    Article  PubMed  CAS  Google Scholar 

  • Boccazzi P, Zhang JK, Metcalf WW (2000) Generation of dominant selectable markers for resistance to pseudomonic acid by cloning and mutagenesis of the ileS gene from the archaeon Methanosarcina barkeri Fusaro. J Bacteriol 182:2611–2618

    Article  PubMed  CAS  Google Scholar 

  • Boch J, Nau-Wagner G, Kneip S, Bremer E (1997) Glycine betaine aldehyde dehydrogenase from Bacillus subtilis: characterization of an enzyme required for the synthesis of the osmoprotectant glycine betaine. Arch Microbiol 168:282–289

    Article  PubMed  CAS  Google Scholar 

  • Bouche N, Fait A, Bouchez D, Moller SG, Fromm H (2003) Mitochondrial succinic-semialdehyde dehydrogenase of the gamma-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci USA 100:6843–6848

    Article  PubMed  CAS  Google Scholar 

  • Buschmann S, Warkentin E, Xie H, Langer JD, Ermler U, Michel H (2010) The structure of cbb 3 cytochrome oxidase provides insights into proton pumping. Science 329:327–330

    Article  PubMed  CAS  Google Scholar 

  • Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U, Müller V (2008) Life close to the thermodynamic limit: how methanogenic archaea conserve energy. In: Schäfer G, Penefsky HS (eds) Bioenergetics: energy conservation and conversion. Springer, Heidelberg, pp 123–152

    Google Scholar 

  • Deppenmeier U, Müller V, Gottschalk G (1996) Pathways of energy conservation in methanogenic Archaea. Arch Microbiol 165:149–163

    Article  CAS  Google Scholar 

  • Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK (1997) Crystal structure of methyl coenzyme M reductase—the key enzyme of biological methane formation. Science 278:1457–1462

    Article  PubMed  CAS  Google Scholar 

  • Falkenberg P, Strom AR (1990) Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of Escherichia coli. Biochim Biophys Acta 1034:253–259

    Article  PubMed  CAS  Google Scholar 

  • Ferry JG (1993) Fermentation of acetate. In: Ferry JG (ed) Methanogenesis. Chapman and Hall, New York, pp 304–334

    Chapter  Google Scholar 

  • Fiedler S, Wirth R (1988) Transformation of bacteria with plasmid DNA by electroporation. Anal Biochem 170:38–44

    Article  PubMed  CAS  Google Scholar 

  • Fox JD, Kerby RL, Roberts GP, Ludden PW (1996) Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme. J Bacteriol 178:1515–1524

    PubMed  CAS  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A et al (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542

    Article  PubMed  CAS  Google Scholar 

  • Guss AM, Mukhopadhyay B, Zhang JK, Metcalf WW (2005) Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H2 metabolism between closely related species. Mol Microbiol 55:1671–1680

    Article  PubMed  CAS  Google Scholar 

  • Guss AM, Rother M, Zhang JK, Kulkarni G, Metcalf WW (2008) New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species. Archaea 2:193–203

    Article  PubMed  CAS  Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123

    Article  PubMed  CAS  Google Scholar 

  • Hovey R, Lentes S, Ehrenreich A et al (2005) DNA microarray analysis of Methanosarcina mazei Gö1 reveals adaptation to different methanogenic substrates. Mol Genet Genomics 273:225–239

    Article  PubMed  CAS  Google Scholar 

  • Ishihama Y, Oda Y, Tabata T et al (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–1272

    Article  PubMed  CAS  Google Scholar 

  • Jakoby WB (1963) Aldehyde dehydrogenases. In: Boyer PD, Lardy H, Myrback K (eds) The Enzymes, 2nd edn. Academic Press, New York, pp 203–221

    Google Scholar 

  • Kerby RL, Youn H, Roberts GP (2008) RcoM: a new single-component transcriptional regulator of CO metabolism in bacteria. J Bacteriol 190:3336–3343

    Article  PubMed  CAS  Google Scholar 

  • Kratzer C, Welte C, Dörner K, Friedrich T, Deppenmeier U (2011) Methanoferrodoxin represents a new class of superoxide reductase containing an iron-sulfur cluster. FEBS J 278:442–451

    Article  PubMed  Google Scholar 

  • Ladapo J, Whitman WB (1990) Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Proc Natl Acad Sci USA 87:5598–5602

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lessner DJ, Li L, Li Q et al (2006) An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics. Proc Natl Acad Sci USA 103:17921–17926

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Li L, Rejtar T, Lessner DJ, Karger BL, Ferry JG (2006) Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. J Bacteriol 188:702–710

    Article  PubMed  CAS  Google Scholar 

  • Li L, Li Q, Rohlin L et al (2007) Quantitative proteomic and microarray analysis of the archaeon Methanosarcina acetivorans grown with acetate versus methanol. J Proteome Res 6:759–771

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Ferry JG (1985) Production and consumption of hydrogen during growth of Methanosarcina spp. on acetate. Appl Environ Microbiol 49:247–249

    PubMed  CAS  Google Scholar 

  • Lütke-Eversloh T, Steinbüchel A (1999) Biochemical and molecular characterization of a succinate semialdehyde dehydrogenase involved in the catabolism of 4-hydroxybutyric acid in Ralstonia eutropha. FEMS Microbiol Lett 181:63–71

    Article  PubMed  Google Scholar 

  • Malaspina P, Picklo MJ, Jakobs C, Snead OC, Gibson KM (2009) Comparative genomics of aldehyde dehydrogenase 5a1 (succinate semialdehyde dehydrogenase) and accumulation of gamma-hydroxybutyrate associated with its deficiency. Hum Genomics 3:106–120

    PubMed  CAS  Google Scholar 

  • Marvin KA, Kerby RL, Youn H, Roberts GP, Burstyn JN (2008) The transcription regulator RcoM-2 from Burkholderia xenovorans is a cysteine-ligated hemoprotein that undergoes a redox-mediated ligand switch. Biochemistry 47:9016–9028

    Article  PubMed  CAS  Google Scholar 

  • Metcalf WW, Zhang JK, Shi X, Wolfe RS (1996) Molecular, genetic, and biochemical characterization of the serC gene of Methanosarcina barkeri Fusaro. J Bacteriol 178:5797–5802

    PubMed  CAS  Google Scholar 

  • Moran JJ, House CH, Vrentas JM, Freeman KH (2008) Methyl sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans. Appl Environ Microbiol 74:540–542

    Article  PubMed  CAS  Google Scholar 

  • O’Brien JM, Wolkin RH, Moench TT, Morgan JB, Zeikus JG (1984) Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol 158:373–375

    PubMed  Google Scholar 

  • Oelgeschläger E, Rother M (2008) Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea. Arch Microbiol 190:257–269

    Article  PubMed  Google Scholar 

  • Oelgeschläger E, Rother M (2009a) In vivo role of three fused corrinoid/methyl transfer proteins in Methanosarcina acetivorans. Mol Microbiol 72:1260–1272

    Article  PubMed  Google Scholar 

  • Oelgeschläger E, Rother M (2009b) Influence of carbon monoxide on metabolite formation in Methanosarcina acetivorans. FEMS Microbiol Lett 292:254–260

    Article  PubMed  Google Scholar 

  • Otis AB (1970) The physiology of carbon monoxide poisoning and evidence for acclimatization. Ann NY Acad Sci 174:242–245

    Article  PubMed  CAS  Google Scholar 

  • Pritchett MA, Zhang JK, Metcalf WW (2004) Development of a markerless genetic exchange method for Methanosarcina acetivorans C2A and its use in construction of new genetic tools for methanogenic archaea. Appl Environ Microbiol 70:1425–1433

    Article  PubMed  CAS  Google Scholar 

  • Roessler M, Müller V (2001) Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol 3:743–754

    Article  CAS  Google Scholar 

  • Rother M, Metcalf WW (2004) Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: An unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci USA 101:16929–16934

    Article  PubMed  CAS  Google Scholar 

  • Rother M, Metcalf WW (2005) Genetic technologies for Archaea. Curr Opin Microbiol 8:745–751

    Article  PubMed  CAS  Google Scholar 

  • Rother M, Oelgeschläger E, Metcalf WW (2007) Genetic and proteomic analyses of CO utilization by Methanosarcina acetivorans. Arch Microbiol 188:463–472

    Article  PubMed  CAS  Google Scholar 

  • Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978

    PubMed  CAS  Google Scholar 

  • Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506

    PubMed  CAS  Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  PubMed  CAS  Google Scholar 

  • Vizcaino JA, Cote R, Reisinger F et al (2009) A guide to the proteomics identifications database proteomics data repository. Proteomics 9:4276–4283

    Article  PubMed  CAS  Google Scholar 

  • Wanner BL (1986) Novel regulatory mutants of the phosphate regulon in Escherichia coli K-12. J Mol Biol 191:39–58

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

V. Müller, Goethe-Universität Frankfurt, and H. Michel, Max-Planck-Institut für Biophysik, are gratefully acknowledged for their support. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (RO 2445/6-1) to M.R. and by grants from the Bundesministerium für Bildung und Forschung and the European Union ESFRI Instruct initiative (Membrane Protein Core Center) and by the Max-Planck Gesellschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rother.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kliefoth, M., Langer, J.D., Matschiavelli, N. et al. Genetic analysis of MA4079, an aldehyde dehydrogenase homolog, in Methanosarcina acetivorans . Arch Microbiol 194, 75–85 (2012). https://doi.org/10.1007/s00203-011-0727-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0727-4

Keywords

Navigation