Skip to main content

Advertisement

Log in

In silico prediction of horizontal gene transfer in Streptococcus thermophilus

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A combination of gene loss and acquisition through horizontal gene transfer (HGT) is thought to drive Streptococcus thermophilus adaptation to its niche, i.e. milk. In this study, we describe an in silico analysis combining a stochastic data mining method, analysis of homologous gene distribution and the identification of features frequently associated with horizontally transferred genes to assess the proportion of the S. thermophilus genome that could originate from HGT. Our mining approach pointed out that about 17.7% of S. thermophilus genes (362 CDSs of 1,915) showed a composition bias; these genes were called ‘atypical’. For 22% of them, their functional annotation strongly support their acquisition through HGT and consisted mainly in genes encoding mobile genetic recombinases, exopolysaccharide (EPS) biosynthesis enzymes or resistance mechanisms to bacteriophages. The distribution of the atypical genes in the Firmicutes phylum as well as in S. thermophilus species was sporadic and supported the HGT prediction for more than a half (52%, 189). Among them, 46 were found specific to S. thermophilus. Finally, by combining our method, gene annotation and sequence specific features, new genome islands were suggested in the S. thermophilus genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ammann A, Neve H, Geis A, Heller KJ (2008) Plasmid transfer via transduction from Streptococcus thermophilus to Lactococcus lactis. J Bacteriol 190:3083–3087

    Article  PubMed  CAS  Google Scholar 

  • Angel CS, Ruzek M, Hostetter MK (1994) Degradation of C3 by Streptococcus pneumoniae. J Infect Dis 170:600–608

    Google Scholar 

  • Baum LE, Petrie T, Soules G, Weiss N (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. Ann Math Stat 41:164–171

    Article  Google Scholar 

  • Blomqvist T, Steinmoen H, Havarstein LS (2006) Natural genetic transformation: a novel tool for efficient genetic engineering of the dairy bacterium Streptococcus thermophilus. Appl Environ Microbiol 72:6751–6756

    Article  PubMed  CAS  Google Scholar 

  • Bourgoin F, Pluvinet A, Gintz B, Decaris B, Guedon G (1999) Are horizontal transfers involved in the evolution of the Streptococcus thermophilus exopolysaccharide synthesis loci? Gene 233:151–161

    Article  PubMed  CAS  Google Scholar 

  • Brochet M, Couve E, Glaser P, Guedon G, Payot S (2008) Integrative conjugative elements and related elements are major contributors to the genome diversity of Streptococcus agalactiae. J Bacteriol 190:6913–6917

    Article  PubMed  CAS  Google Scholar 

  • Burrus V, Pavlovic G, Decaris B, Guedon G (2002) The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid 48:77–97

    Article  PubMed  CAS  Google Scholar 

  • Delorme C, Poyart C, Ehrlich SD, Renault P (2007) Extent of horizontal gene transfer in evolution of Streptococci of the salivarius group. J Bacteriol 189:1330–1341

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2129

    Article  PubMed  CAS  Google Scholar 

  • Du Preez JA (1998) Efficient training of high-order hidden Markov model using first-order representations. Comput Speech Lang 12:23–39

    Article  Google Scholar 

  • Eng C, Asthana C, Aigle B, Hergalant S, Mari JF, Leblond P (2009) A new data mining approach for the detection of bacterial promoters combining stochastic and combinatorial methods. J Comput Biol 16:1211–1225

    Article  PubMed  CAS  Google Scholar 

  • Fernandez A, Thibessard A, Borges F, Gintz B, Decaris B, Leblond-Bourget N (2004) Characterization of oxidative stress-resistant mutants of Streptococcus thermophilus CNRZ368. Arch Microbiol 182:364–372

    Article  PubMed  CAS  Google Scholar 

  • Fontaine L et al (2007) Quorum-sensing regulation of the production of Blp bacteriocins in Streptococcus thermophilus. J Bacteriol 189:7195–7205

    Article  PubMed  CAS  Google Scholar 

  • Fontaine L et al (2010) A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. J Bacteriol 192:1444–1454

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Vallve S, Guzman E, Montero MA, Romeu A (2003) HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res 31:187–189

    Article  PubMed  CAS  Google Scholar 

  • He Y (1988) Extended Viterbi algorithm for second-order hidden Markov process. Proc IEEE Int Conf Pattern Recognit 2:718–720

    Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    Google Scholar 

  • Layec S, Decaris B, Leblond-Bourget N (2008) Diversity of firmicutes peptidoglycan hydrolases and specificities of those involved in daughter cell separation. Res Microbiol 159:507–515

    Article  PubMed  CAS  Google Scholar 

  • Le Ber F, Benoît M, Schott C, Mari JF, Mignolet C (2006) Studying crop sequences with carrotage, a HMM-based data mining software. Ecol Modell 191:170–185

    Article  Google Scholar 

  • Liu M, Siezen RJ, Nauta A (2009) In silico prediction of horizontal gene transfer events in Lactobacillus bulgaricus and Streptococcus thermophilus reveals protocooperation in yogurt manufacturing. Appl Environ Microbiol 75(12):4120–4129

    Google Scholar 

  • Mari J-F, Haton J-P, Kriouile A (1997) Automatic word recognition based on second-order hidden Markov models. IEEE Trans. Speech Audio Process 5:22–25

    Google Scholar 

  • Nakamura Y, Itoh T, Matsuda H, Gojobori T (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 36:760–766

    Article  PubMed  CAS  Google Scholar 

  • Nicolas P et al (2002) Mining Bacillus subtilis chromosome heterogeneities using hidden Markov models. Nucleic Acids Res 30:1418–1426

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8:581–599

    Article  PubMed  CAS  Google Scholar 

  • Pavlovic G, Burrus V, Toulmay A, Choulet F, Decaris B, Guedon G (2004) Characterization and evolution of a family of integrative and potentially conjugative or mobilizable elements from Streptococcus thermophilus. Lait 84:7–14

    Article  CAS  Google Scholar 

  • Rasmussen TB, Danielsen M, Valina O, Garrigues C, Johansen E, Pedersen MB (2008) Streptococcus thermophilus core genome: comparative genome hybridization study of 47 strains. Appl Environ Microbiol 74:4703–4710

    Article  PubMed  CAS  Google Scholar 

  • Rocha EP, Danchin E (2002) Base composition bias might result from competition for metabolic resources. Trends Genet 18:291–294

    Article  PubMed  CAS  Google Scholar 

  • Rutherford K et al (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945

    Article  PubMed  CAS  Google Scholar 

  • Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    PubMed  CAS  Google Scholar 

  • Vernikos GS, Parkhill J (2006) Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22:2196–2203

    Article  PubMed  CAS  Google Scholar 

  • Waack S et al (2006) Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 7:142

    Article  PubMed  Google Scholar 

  • Yoon SH, Hur CG, Kang HY, Kim YH, Oh TK, Kim JF (2005) A computational approach for identifying pathogenicity islands in prokaryotic genomes. BMC Bioinformatics 6:184

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Annabelle Thibessard or Pierre Leblond.

Additional information

Communicated by Erko Stackebrandt.

Catherine Eng and Annabelle Thibessard contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eng, C., Thibessard, A., Danielsen, M. et al. In silico prediction of horizontal gene transfer in Streptococcus thermophilus. Arch Microbiol 193, 287–297 (2011). https://doi.org/10.1007/s00203-010-0671-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0671-8

Keywords

Navigation