Design and implementation of an ADC-based real-time simulator along with an optimal selection of the switch model parameters


The method for modeling switching converters plays a key role in real-time simulators. Associate discrete circuit (ADC) modeling technique is a commonly used method for modeling the switching converter. However, the optimal selection of the ADC-based switch model parameters has great importance in the accuracy of the real-time simulator. In this paper, the design of a real-time simulator for a switching power converter has been done, in which a novel method for detecting optimum values of the switch model parameters has been expressed. Particle swarm optimization (PSO) algorithm is used to find these optimum values using state-space analysis of the modeled circuit in the z-domain. The modified nodal analysis (MNA) method solves the real-time model at each simulation time-step. Case studies are a single-phase 5-level Cascaded H-Bridge (CHB), three-phase 9-level CHB inverter, and a Transmission line. Field-programmable gate array (FPGA) has been used as a platform for implementing the real-time simulator. Experimental result of the real-time simulator of the 5-level CHB inverter on a SPARTAN-6 FPGA and its comparison with the result of a prototype of a 5-level CHB inverter confirms not only the performance of the real-time simulator, but also the effectiveness of the proposed method for confirming the real-time simulator accuracy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21


  1. 1.

    Omar Faruque MD et al (2015) Real-time simulation technologies for power systems design, testing, and analysis. IEEE Power Energy Technol Syst J 2(2):63–73.

    Article  Google Scholar 

  2. 2.

    Dagbagi M et al (2016) ADC-based embedded real-time simulator of a power converter implemented in a low-cost FPGA: application to a fault-tolerant control of a grid-connected voltage-source rectifier. IEEE Trans Ind Electron 63(2):1179–1190.

    Article  Google Scholar 

  3. 3.

    Zhang Y, Ding H, Kuffel R (2017) Key techniques in real time digital simulation for closed-loop testing of HVDC systems. CSEE J Power Energy Syst 3(2):125–130.

    Article  Google Scholar 

  4. 4.

    Zhang F, Li W, Joós G (2016) A voltage-level-based model predictive control of modular multilevel converter. IEEE Trans Ind Electron 63(8):5301–5312.

    Article  Google Scholar 

  5. 5.

    Parma GG, Dinavahi V (2007) Real-time digital hardware simulation of power electronics and drives. IEEE Trans Power Deliv 22(2):1235–1246.

    Article  Google Scholar 

  6. 6.

    Guillaud X et al (2015) Applications of real-time simulation technologies in power and energy systems. IEEE Power Energy Technol Syst J 2(3):103–115.

    Article  Google Scholar 

  7. 7.

    Huang Z, Duan T, Tang C, Dinavahi V (2021) Modular assembly and real-time hardware emulation of on-the-move multidomain multimachine system on more-electric aircraft. IEEE Trans Ind Electron 68(2):1814–1824.

    Article  Google Scholar 

  8. 8.

    Tian L et al (2020) Real-time hardware-in-the-loop emulation of high-speed rail power system with SiC-based energy conversion. IEEE Access.

    Article  Google Scholar 

  9. 9.

    Rezaei Larijani M, Zolghadri MR, Shahbazi M (2016) Design and implementation of an FPGA-based Real-time simulator for H-Bridge converter. In: 2016 7th power electronics and drive systems technologies conference (PEDSTC), pp 504–510.

  10. 10.

    Strunz K (2004) Flexible numerical integration for efficient representation of switching in real time electromagnetic transients simulation. IEEE Trans Power Deliv 19(3):1276–1283.

    Article  Google Scholar 

  11. 11.

    Lian KL, Lehn PW (2005) Real-time simulation of voltage source converters based on time average method. IEEE Trans Power Syst 20(1):110–118.

    Article  Google Scholar 

  12. 12.

    Ren W et al (2011) Interfacing issues in real-time digital simulators. IEEE Trans Power Deliv 26(2):1221–1230.

    Article  Google Scholar 

  13. 13.

    Lin N, Dinavahi V (2018) Dynamic electro-magnetic-thermal modeling of MMC-based DC–DC converter for real-time simulation of MTDC grid. IEEE Trans Power Deliv 33(3):1337–1347.

    Article  Google Scholar 

  14. 14.

    Hui SYR, Morrall S (1994) Generalised associated discrete circuit model for switching devices. IEE Proc Sci Meas Technol 141(1):57–64.

    Article  Google Scholar 

  15. 15.

    Matar M, Iravani R (2010) FPGA implementation of the power electronic converter model for real-time simulation of electromagnetic transients. IEEE Trans Power Deliv 25(2):852–860.

    Article  Google Scholar 

  16. 16.

    Pejovic P, Maksimovic D (1994) A method for fast time-domain simulation of networks with switches. IEEE Trans Power Electron 9(4):449–456.

    Article  Google Scholar 

  17. 17.

    Blanchette HF, Ould-Bachir T, David JP (2012) A state-space modeling approach for the FPGA-based real-time simulation of high switching frequency power converters. IEEE Trans Ind Electron 59(12):4555–4567.

    Article  Google Scholar 

  18. 18.

    Mu Q, Liang J, Zhou X, Li Y, Zhang X (2014) Improved ADC model of voltage-source converters in DC grids. IEEE Trans Power Electron 29(11):5738–5748.

    Article  Google Scholar 

  19. 19.

    Razzaghi R, Foti C, Paolone M, Rachidi F (2014) A method for the assessment of the optimal parameter of discrete-time switch model. Electric Power Syst Res 115:80–86.

    Article  Google Scholar 

  20. 20.

    Dufour C (2017) Method and system for reducing power losses and state-overshoots in simulators for switched power electronic circuit. US9665672B2, May 30, 2017

  21. 21.

    Maguire T, James G (2005) Small time-step (< 2 µs) VSC model for the real time digital simulator. In: Presented at the in Power Systems Transients (IPST’05), Montreal, Canada, 2005

  22. 22.

    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, 1995. Proceedings, Nov. 1995, vol 4, pp 1942–1948.

  23. 23.

    Ho C-W, Ruehli A, Brennan P (1975) The modified nodal approach to network analysis. IEEE Trans Circuits Syst 22(6):504–509.

    Article  Google Scholar 

  24. 24.

    Wedepohl LM, Jackson L (2002) Modified nodal analysis: an essential addition to electrical circuit theory and analysis. Eng Sci Educ J 11(3):84–92.

    Article  Google Scholar 

  25. 25.

    “Xilinx documentation.”

  26. 26.

    Chen Y, Dinavahi V (2009) FPGA-based real-time EMTP. IEEE Trans Power Deliv 24(2):892–902.

    Article  Google Scholar 

  27. 27.

    Ziogas PD, Wiechmann EP, Stefanovic VR (1985) A computer-aided analysis and design approach for static voltage source inverters. IEEE Trans Ind Appl 22(5):1234–1241.

    Article  Google Scholar 

  28. 28.

    Meka R, Sloderbeck M, Faruque MO, Langston J, Steurer M, DeBrunner LS (2013) FPGA model of a high-frequency power electronic converter in an RTDS power system co-simulation. In: 2013 IEEE electric ship technologies symposium (ESTS), pp 71–75.

  29. 29.

    “Typhoon HIL GmbH, Zurich, Switzerland. Typhoon HIL RTS.”

  30. 30.

    Dufour C et al (2012) Real-time simulation of power electronic systems and devices. In: Vasca F, Iannelli L (eds) Dynamics and control of switched electronic systems. Springer, London, pp 451–487

    Google Scholar 

  31. 31.

    Franklin GF, Powel JD, Workman ML (1998) Discrete equivalents. In: Digital control of dynamic systems, 3rd edn. Addison Wesley Longman, CA, USA, pp 183–193

    Google Scholar 

  32. 32.

    Chen W-K (ed) (2009) Analog and VLSI circuits the circuits and filters handbook, 3rd edn. CRC Press, Chicago, USA

    Google Scholar 

  33. 33.

    Katsuhiko O (2010) Transient and steady-state response analyses. In: Modern control engineering, 5th ed., Pearson Education (US), 2010, pp 161–173

  34. 34.

    Lee JH, Song JY, Kim DW, Kim JW, Kim YJ, Jung SY (2018) Particle swarm optimization algorithm with intelligent particle number control for optimal design of electric machines. IEEE Trans Ind Electron 65(2):1791–1798.

    Article  Google Scholar 

  35. 35.

    Coppola M, Di Napoli F, Guerriero P, Iannuzzi D, Daliento S, Del Pizzo A (2016) An FPGA-based advanced control strategy of a Grid­Tied PV CHB inverter. IEEE Trans Power Electron 31(1):806–816.

    Article  Google Scholar 

  36. 36.

    Chavarria J, Biel D, Guinjoan F, Meza C, Negroni JJ (2013) Energy-balance control of PV cascaded multilevel grid-connected inverters under level-shifted and phase-shifted PWMs. IEEE Trans Ind Electron 60(1):98–111.

    Article  Google Scholar 

  37. 37.

    Mahdi S (2011) Digital VLSI System Design, 2011.

Download references


Funding was provided by Iran National Science Foundation (No. 93038745).

Author information



Corresponding author

Correspondence to Morteza Rezaei Larijani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezaei Larijani, M., Zolghadri, M.R. Design and implementation of an ADC-based real-time simulator along with an optimal selection of the switch model parameters. Electr Eng (2021).

Download citation


  • Associate discrete circuit (ADC)
  • Eigenvalues
  • FPGA
  • PSO
  • Real-time simulation
  • Switching converters