Robust cascade control of electrical drives using discrete-time chattering-free sliding mode controllers with output saturation

Abstract

The paper considers electrical drives control having a hierarchical cascaded structure. This structure has an inner current control loop and outer loops for speed and position control. The design of the control is performed using a discrete-time model of electrical drive. In all the loops, the discrete-time quasi sliding mode control is used for controller design because of its robustness to external and parametric matched disturbances (inherent to electrical drives) and the capability to ensure the desired dynamics. To enhance the robustness to disturbances, a nonlinear disturbance compensator is also implemented. The chattering in sliding mode is eliminated by using a new modified discrete-time super twisting control. The current and the speed controllers are designed for linear discrete-time first-order models, while the position controller is designed for a linear second-order discrete-time model. The axis position is measured by a mechanical sensor (encoder). The speed is estimated from the position measurements using Euler derivative approximation. Alternatively, it can be obtained by an observer. The proposed design is straightforward and results in high-performance, robust control with strong disturbance rejection capability and negligible overshoots. All theoretically obtained claims are demonstrated by experiments on an induction motor drive with a rotor field-oriented control structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Leonhard W (2001) Control of electrical drives. Springer, Berlin, Heidelberg

    Google Scholar 

  2. 2.

    Lascu C, Argeseanu A, Blaabjerg F (2019) Super-twisting sliding mode direct torque and flux control of induction machine drives. IEEE Trans Power Electron. https://doi.org/10.1109/TPEL.2019.2944124

    Article  Google Scholar 

  3. 3.

    Hung CW, Lin CT, Liu CW, Yen JY (2007) A variable-sampling controller for brushless DC motor drives with low-resolution position sensors. IEEE Trans Ind Electron 54:2846–2852. https://doi.org/10.1109/TIE.2007.901303

    Article  Google Scholar 

  4. 4.

    Liu Z, Wang Q (2008) Hybrid control with sliding–mode plus self–tuning pi for electrical machines. J Electr Eng 59:113–121

    Google Scholar 

  5. 5.

    Preitl Z, Bauer P, Bokor J (2007) Cascade control solution for traction motor for hybrid electric vehicles. Acta Polytechn Hungarica 4(3):75–88

    Google Scholar 

  6. 6.

    Tarchala G, Orlowska-Kowalska T (2016) Sliding mode speed and position control of induction motor drive in cascade connection. In: Robust control—theoretical models and case studies. InTech, London https://doi.org/10.5772/63407

  7. 7.

    Pisano A, Davila A, Fridman L, Usai E (2008) Cascade control of PM DC drives via second-order sliding-mode technique. IEEE Trans Ind Electron 55:3846–3854. https://doi.org/10.1109/TIE.2008.2002715

    Article  Google Scholar 

  8. 8.

    Vittek J, Dodds -Stephen J, Briš -Peter, et al (2008) Experimental verification of chattering free sliding mode control of the drive position employing PMSM. J Electr Eng 59:139–145

    Google Scholar 

  9. 9.

    Morar A (2008) Predictive cascade control of DC motor. Acta Electroteh 49:89–94

    Google Scholar 

  10. 10.

    Yiguang C, Chenghan L, Zhenmao B, Xiaobin Z (2018) Modified super-twisting algorithm with an anti-windup coefficient adopted in PMSM speed loop control. In: 10th International Conference on Applied Energy (ICAE2018). Hong Kong, pp 2637–2642

  11. 11.

    Mishra A (2012) Design of speed controller for squirrel-cage induction motor using fuzzy logic-based techniques. Int J Comput Appl 58:975–8887

    Google Scholar 

  12. 12.

    Damiano A, Gatto GL, Marongiu I, Pisano A (2004) Second-order sliding-mode control of dc drives. IEEE Trans Ind Electron 51:364–373. https://doi.org/10.1109/TIE.2004.825268

    Article  Google Scholar 

  13. 13.

    Veselić B, Peruničić-Draženović B, Milosavljevic Č (2008) High-performance position control of induction motor using discrete-time sliding-mode control. IEEE Trans Ind Electron 55:3809–3817. https://doi.org/10.1109/TIE.2008.2006014

    Article  Google Scholar 

  14. 14.

    Fujimoto H, Hori Y, Kawamura A (2001) Perfect tracking control based on multirate feedforward control with generalized sampling periods. IEEE Trans Ind Electron 48:636–644. https://doi.org/10.1109/41.925591

    Article  Google Scholar 

  15. 15.

    Jin QB, Liu Q (2014) IMC-PID design based on model matching approach and closed-loop shaping. ISA Trans 53:462–473. https://doi.org/10.1016/j.isatra.2013.11.005

    Article  Google Scholar 

  16. 16.

    Ting CS, Chang YN, Shi BW, Lieu JF (2015) Adaptive backstepping control for permanent magnet linear synchronous motor servo drive. IET Electr Power Appl 9:265–279. https://doi.org/10.1049/iet-epa.2014.0246

    Article  Google Scholar 

  17. 17.

    Lino P, Maione G, Stasi S et al (2017) Synthesis of fractional-order PI controllers and fractional-order filters for industrial electrical drives. IEEE/CAA J Autom Sin 4:58–69. https://doi.org/10.1109/JAS.2017.7510325

    MathSciNet  Article  Google Scholar 

  18. 18.

    Ferrara A (2007) Discussion on: “An adaptive variable structure control law for sensorless induction motors.” Eur J Control 13:393–397

    Article  Google Scholar 

  19. 19.

    Utkin V, Guldner J, Shi J (2017) Sliding mode control in electro-mechanical systems, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  20. 20.

    Slotine JJE (1984) Sliding controller design for non-linear systems. Int J Control 40:421–434. https://doi.org/10.1080/00207178408933284

    Article  MATH  Google Scholar 

  21. 21.

    Bondarev AG, Bondarev SA, Kostylyeva NY, Utkin VI (1985) Sliding modes in systems with asymptotic observers. Aut Remote Contr 46:679–684

    MATH  Google Scholar 

  22. 22.

    Golo G, van der Schaft A, Milosavljević Č (2000) Discretization of control law for a class of variable structure control systems. Department of Applied Mathematics, University of Twente, Twente

    Google Scholar 

  23. 23.

    Huber O, Brogliato B, Acary V et al (2016) Experimental results on implicit and explicit time-discretization of equivalent control-based sliding mode control. In: Fridman L, Barbot JP, Plestan F (eds) Recent trends in sliding mode control. Institution of Engineering and Technology, New York, pp 207–236

    Google Scholar 

  24. 24.

    Guermouche M, Ali SA, Langlois N (2015) Super-twisting algorithm for dc motor position control via disturbance observer. IFAC-PapersOnLine 48:43–48. https://doi.org/10.1016/j.ifacol.2015.12.351

    Article  Google Scholar 

  25. 25.

    Levant A (1993) Sliding order and sliding accuracy in sliding mode control. Int J Control 58:1247–1263. https://doi.org/10.1080/00207179308923053

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Levant A (1998) Robust exact differentiation via sliding mode technique. Automatica 34:379–384. https://doi.org/10.1016/S0005-1098(97)00209-4

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Tarchała G, Orłowska-Kowalska T (2020) Discrete sliding mode speed control of induction motor using time-varying switching line. Electronics 9:185. https://doi.org/10.3390/electronics9010185

    Article  Google Scholar 

  28. 28.

    Golo G, Milosavljević Č (2000) Robust discrete-time chattering free sliding mode control. Syst Control Lett 41:19–28. https://doi.org/10.1016/S0167-6911(00)00033-5

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Veselić B, Peruničić-Draženović B, Milosavljević Č (2010) Improved discrete-time sliding-mode position control using Euler velocity estimation. IEEE Trans Ind Electron 57:3840–3847. https://doi.org/10.1109/TIE.2010.2042416

    Article  Google Scholar 

  30. 30.

    Bartolini G, Ferrara A, Utkin VI (1995) Adaptive sliding mode control in discrete-time systems. Automatica 31:769–773. https://doi.org/10.1016/0005-1098(94)00154-B

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Milosavljević Č, Peruničić-Draženović B, Veselić B, Mitić D (2007) A new design of servomechanisms with digital sliding mode. Electr Eng 89:233–244. https://doi.org/10.1007/s00202-005-0334-y

    Article  Google Scholar 

  32. 32.

    Lješnjanin M, Draženović B, Milosavljević Č, Veselić B (2011) Disturbance compensation in digital sliding mode. In: EUROCON 2011 - International Conference on Computer as a Tool - Joint with Conftele 2011. Lisbon

  33. 33.

    Milosavljević Č, Peruničić-Draženović B, Veselić B (2013) Discrete-time velocity servo system design using sliding mode control approach with disturbance compensation. IEEE Trans Ind Informatics 9:920–927. https://doi.org/10.1109/TII.2012.2226431

    Article  Google Scholar 

  34. 34.

    Draženović B, Milosavljević Č, Veselić B (2013) Comprehensive approach to sliding mode design and analysis in linear systems. In: Bandyopadhyay B, Janardhanan S, Spurgeon SK (eds) Advances in sliding mode control: concept, theory and implementation. Springer, Berlin Heidelberg, pp 1–19

    Google Scholar 

  35. 35.

    Su WC, Drakunov SV, Özgüner Ü (2000) An O(T2) boundary layer in sliding mode for sampled-data systems. IEEE Trans Automat Contr 45:482–485. https://doi.org/10.1109/9.847728

    Article  MATH  Google Scholar 

  36. 36.

    Chan CY (1994) Robust discrete-time sliding mode controller. Syst Control Lett 23:371–374. https://doi.org/10.1016/0167-6911(94)90070-1

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Milosavljavic C, Petronijevic M, Veselic B et al (2019) Robust discrete-time quasi-sliding mode based nonlinear PI controller design for control of plants with input saturation. Control Eng Appl Inf 21:31–41

    Google Scholar 

  38. 38.

    Ambrosino G, Celentano G, Garofalo F (1984) Variable structure model-reference adaptive-control systems. Int J Control 39(6):1339–1349

    Article  Google Scholar 

  39. 39.

    Han J-S, Kim T-I, Oh T-H et al (2019) Effective disturbance compensation method under control saturation in discrete-time sliding mode control. IEEE Trans Ind Electron 67(7):5696–5707. https://doi.org/10.1109/tie.2019.2931213

    Article  Google Scholar 

  40. 40.

    Milosavljević Č, Peruničić-Draženović B, Veselić B, Petronijević M (2017) High-performance discrete-time chattering-free sliding mode-based speed control of induction motor. Electr Eng 99:583–593. https://doi.org/10.1007/s00202-016-0386-1

    Article  Google Scholar 

  41. 41.

    Sarpturk S, Istefanopulos Y, Kaynak O (1987) On the stability of discrete-time sliding mode control systems. IEEE Trans Automat Contr 32:930–932. https://doi.org/10.1109/tac.1987.1104468

    Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Milutin P. Petronijević.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Proposition 1

One of the DSM stability conditions, proposed in [41], is given with.

$$ \left| {s_{{{\updelta },k + 1}} } \right| < \left| {s_{{{\updelta },k}} } \right|. $$
(A.1)

This means that the system trajectory tends to the sliding surface. If this condition is satisfied in a saturation regime, system trajectories will approach the sliding surface and the control signal must come out of saturation in a finite time.

Let it holds \(\left| {u_{\Sigma,k} } \right| = \left| {\left( {k_{r1} + k_{r2} } \right)\frac{{s_{{{\updelta },k }} }}{T} + {\mathbf{c}}_{{\updelta }} {\mathbf{A}}_{{\updelta }} {\mathbf{x}}_{k} } \right| > U_{0} \), \(\left| {d_{k} } \right| \le d_{0} < U_{0 } . \) Let \(k_{r3} \left( {0 \le k_{r3} < 1} \right)\) be introduced such that \(k_{r1} + k_{r2} + k_{r3} = 1\). Then the sliding dynamics, defined by (5), in the saturated regime can be rewritten as

$$ s_{{{\updelta },k + 1}} = \left[ {\left( {k_{r1} + k_{r2} } \right)s_{{{\updelta },k}} + T{\mathbf{c}}_{{\updelta }} {\mathbf{A}}_{{\updelta }} {\mathbf{x}}_{k} } \right]\left( {1 - \frac{{U_{0} }}{{\left| {u_{\Sigma,k} } \right|}}} \right) + k_{r3} s_{\updelta,k} + Td_{k} . $$
(A.2)

Since \(\left| {u_{\Sigma,k} } \right| > U_{0}\), then \(0 < \left( {1 - \frac{{U_{0} }}{{\left| {u_{\Sigma,k} } \right|}}} \right) < 1\). Also, having in mind that \(0 < k_{r3} < 1\) and \(\left| {d_{k} } \right| < d_{0} < U_{0}\), the following inequality can be obtained

$$ \begin{aligned} & \left| {s_{{\updelta ,k + 1}} } \right| < \left| {\left( {k_{{r1}} + k_{{r2}} } \right)s_{{\updelta ,k}} + Tu_{{eq,k}} } \right|\left( {1 - \frac{{U_{0} }}{{\left| {u_{{\Sigma ,k}} } \right|}}} \right) + k_{{r3}} \left| {s_{{\updelta ,k}} } \right| + Td_{0} = T\left| {u_{{\Sigma ,k}} } \right|\left( {1 - \frac{{U_{0} }}{{\left| {u_{{\Sigma ,k}} } \right|}}} \right) + k_{{r3}} \left| {s_{{\updelta ,k}} } \right| + Td_{0} \\ & \quad = T\left| {u_{{\Sigma ,k}} } \right| - TU_{0} + k_{{r3}} \left| {s_{{\updelta ,k}} } \right| + Td_{0} \le \left( {k_{{r1}} + k_{{r2}} } \right)\left| {s_{{\updelta ,k}} } \right| + T\left| {u_{{eq,k}} } \right| - TU_{0} + k_{{r3}} \left| {s_{{\updelta ,k}} } \right| + Td_{0} \\ & \quad = \left| {s_{{\updelta ,k}} } \right| + T\left( {\left| {{\mathbf{c}}_{\updelta } {\mathbf{A}}_{\updelta } {\mathbf{x}}_{k} } \right| + d_{0} } \right) - TU_{0} \\ \end{aligned} $$
(A.3)

Hence, it holds

$$ \left| {s_{{{\updelta },k + 1}} } \right| < \left| {s_{{{\updelta },k}} } \right| + T\left( {\left| {u_{eq,k} } \right| + d_{0} } \right) - TU_{0} $$
(A.4)

If

$$ U_{0} > \left| {u_{eq,k} } \right| + d_{0} , $$
(A.5)

(A.1) is fulfilled.

This means that the both \(s_{{{\updelta },k}}\) and \(x_{k}\) will be decreasing, making \(\left| {u_{\Sigma,k} } \right|\) decreasing as well. Therefore, it is inevitable that the control signal becomes smaller than the saturation limit and the system exits saturation. (A.5) must be valid from the initial moment, i.e.

$$ U_{0} > \left| {{\mathbf{c}}_{{\updelta }} {\mathbf{A}}_{{\updelta }} {\mathbf{x}}_{k} } \right| + d_{0} . $$
(A.6)

Appendix B: Proof of Proposition 2

After leaving the saturation mode, the control becomes

$$ u_{k} = - {\mathbf{c}}_{{\updelta }} {\mathbf{A}}_{{\updelta }} {\mathbf{x}}_{k} - T^{ - 1} \left( {k_{r1} + k_{r2} } \right)s_{{{\updelta },k}} $$
(B.1)

and

$$ {\updelta }s_{{{\updelta },k}} = - T^{ - 1} \left( {k_{r1} + k_{r2} } \right)s_{{{\updelta },k}} + d_{k} . $$
(B.2)

From (5) and (B.1), it follows

$$ s_{{{\updelta },k + 1}} = \left( {1 - k_{r1} - k_{r2} } \right)s_{{{\updelta },k}} + Td_{k} . $$
(B.3)

After the first sampling period of the unsaturated control, controller gain is reduced by applying \(k_{r2}\) = 0 in (B.1) and the compensation control is activated. Now, the control becomes

$$ u_{k} = - {\mathbf{c}}_{{\updelta }} {\mathbf{A}}_{{\updelta }} {\mathbf{x}}_{k} - T^{ - 1} k_{r1} s_{{{\updelta },k}} - u_{c,k} , $$
(B.4a)
$$ u_{c,k} = u_{c,k - 1} + k_{{{{int}}}}^{{\upbeta }} Ts_{{{\updelta },k - 1}} . $$
(B.4b)

Sliding variable dynamics is now defined as

$$ s_{{{\updelta },k + 1}} = \left( {1 - k_{r1} } \right)s_{{{\updelta },k}} + T\left( {d_{k} - u_{c,k} } \right), $$
(B.5a)
$$ u_{c,k + 1} = u_{c,k} + k_{int}^{{\upbeta }} Ts_{\updelta ,k} . $$
(B.5b)

By replacing \(z_{k} = d_{k} - u_{c,k}\), previous equations become

$$ s_{{{\updelta },k + 1}} = \left( {1 - k_{r1} } \right)s_{{{\updelta },k}} + Tz_{k} , $$
(B.6a)
$$ z_{k + 1} = - k_{int}^{{\upbeta }} Ts_{{{\updelta },k}} + z_{k} + {\Delta }_{k} . $$
(B.6b)

where \({\Delta }_{k} = d_{k + 1} - d_{k}\).

The characteristic equation of the system (B.6) is

$$ \begin{gathered} \left| {\begin{array}{*{20}c} {z - 1 + k_{r1} } & { - T} \\ {k_{int}^{{\upbeta }} T} & {z - 1} \\ \end{array} } \right| = 0 \Rightarrow F\left( z \right) = a_{2} z^{2} + a_{1} z + a_{0} = 0, \hfill \\ a_{2} = 1 > 0, a_{1} = k_{r1} - 2, a_{0} = 1 - k_{r1} + k_{int}^{{\upbeta }} T^{2} . \hfill \\ \end{gathered} $$
(B.7)

By employing the Jury’s stability test, stability conditions are obtained as

$$ k_{int}^{{\upbeta }} T^{2} > 0, $$
(B.8a)
$$ 4 - 2k_{r1} + k_{int}^{{\upbeta }} T^{2} > 0, $$
(B.8b)
$$ k_{int}^{{\upbeta }} T^{2} < k_{r1} . $$
(B.8c)

Since \(0 < k_{r1} < 1\), these conditions will be fulfilled if \(0 < k_{int}^{{\upbeta }} T^{2} < k_{r1}\). ■

Remark B1

The modified gain \(k_{int}^{{\alpha}}\) from (24) must also satisfy the obtained condition (B.8c).

Remark B2

The condition (B.8c) has been established in [31] in another way for the system whose nonlinearity in (18i) is replaced by the unity gain. This condition is also valid for the system (18) with nonlinearity in (18i) for the stability of the nominal system in a small vicinity of the equilibrium. If the parameter β is set to 0 in (18i) (the nonlinearity becomes signum function), stable oscillations arise even in the nominal system. The exact parameters of the oscillations are very difficult to determine analytically. A practical approach to finding those oscillation parameters is by using the describing function method [37]. For β > 0 oscillations do not occur in the nominal system, but in the system with uncertainty and unmodelled dynamics, oscillations arise. The maximal possible amplitude of the oscillations can be then identified as in the case of β = 0.

Appendix C: Robustness considerations

Let the system be subjected to external disturbance \(f_{k}\) and parameter variations, introduced into the initial model as

$$ \updelta{\mathbf{x}}_{k} = \left( {{\mathbf{A}}_{{\updelta}} + {\Delta }{\mathbf{A}}_{\updelta } } \right){\mathbf{x}}_{k} + {\mathbf{b}}_{{\updelta}} \left( {u_{k} + f_{k} } \right), $$
(C.1)

where \({\Delta }{\mathbf{A}}_{\updelta } \in R^{n \times n}\) is the matrix uncertainties that satisfies the matching conditions. Then it holds \({\Delta }{\mathbf{A}}_{\updelta } = {\mathbf{b}}_{{\updelta}} {\mathbf{v}}\), where \({\mathbf{v}} = \left[ {\begin{array}{*{20}c} {v_{1} } & {v_{2} } & \cdots & {v_{n} } \\ \end{array} } \right]\) is an unknown vector with the property \(\left| {v_{i} } \right| \le v_{m}\) for \(i = 1,2, \cdots ,n\). Using this, the system model becomes (4), where \(d_{k} = f_{k} + {\mathbf{vx}}_{k}\) is the overall matched disturbance. It is evident that \( \left| {d_{k} } \right| \le \left| {f_{k} } \right| + \left| {{\mathbf{vx}}_{k} } \right| \le f_{0} + v_{m} \left\| {{\mathbf{x}}_{{k }} } \right\|_{1} \), where \( \left\| {\mathbf{x}} \right\|_{1} \) denotes 1-norm, i.e. \( \left\| {\mathbf{x}} \right\|_{1} = \mathop \sum \nolimits_{i = 1}^{n} \left| {x_{i} } \right|\).

Taking into account the augmented perturbed model (C.1), it is easy to establish that the condition (20) in the Proposition 1 now becomes

$$ ~U_{0} > |{\mathbf{c}}_{\updelta } {\mathbf{A}}_{\updelta } {\mathbf{x}}_{k} | + f_{0} + f_{m} \left\| {{\mathbf{x}}_{k} } \right\|_{1} ,\user2{~}\;\forall k \ge 0. $$
(C.2)

Since the structure of the model (4), used for the stability consideration in the Proposition 2, is identical to the perturbed model (C.1), the convergence conditions (21) remains unchanged under the assumption of bounded disturbance \({\Delta }_{k}\) in (B.6b). However, \({\Delta }_{k}\) in the case of (C.1) becomes \({\Delta }_{k} = d_{k + 1} - d_{k} = f_{k + 1} - f_{k} + {\mathbf{v}}\left( {{\mathbf{x}}_{k + 1} - {\mathbf{x}}_{k} } \right)\). Hence, \( \left| {\Delta _{k} } \right| \le \left| {f_{{k + 1}} - f_{k} } \right| + v_{m} \left( {\left\| {{\mathbf{x}}_{{k + 1 }} } \right\|_{1} - \left\| {{\mathbf{x}}_{{k }} } \right\|_{1}} \right) \). For small sampling periods \(T\), these differences may be regarded bounded that makes \({\Delta }_{k}\) bounded as well. The presence of external disturbances and parameter perturbations prevents the occurrence of ideal DTSM, so the system motion takes place in some bounded vicinity around the sliding manifold. The width of such a quasi-sliding domain depends on the magnitude of \({\Delta }_{k}\).

This robustness analysis has been conducted under the assumption of the matched parameter perturbations. It is important to point out that the speed contour in the considered cascade controlled ED system is the most disturbance contaminated control loop. Due to the much faster inner current control loop, the speed control loop may be regarded as first-order plant. Fortunately, in the first-order plants the disturbance matching conditions are always fulfilled. This indicates that the requirement for disturbances to be matched is not restrictive.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petronijević, M.P., Milosavljević, Č., Veselić, B. et al. Robust cascade control of electrical drives using discrete-time chattering-free sliding mode controllers with output saturation. Electr Eng (2021). https://doi.org/10.1007/s00202-020-01198-x

Download citation

Keywords

  • Electrical drives
  • Cascade control
  • Position control
  • Discrete-time systems
  • Sliding mode control