Skip to main content
Log in

A combined speed estimation scheme for indirect vector-controlled induction motors

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper a novel speed estimation scheme, combining sliding mode observer (SMO), model reference adaptive system (MRAS), and feedforward control, is proposed for indirect vector-controlled induction motors. Firstly, an intermediate current variable is defined to simplify the \(\Gamma \)-type representation of induction motor. With the definition, a SMO is designed secondly, where the unknown terms in the current equations are replaced with the sliding mode controls. In sliding mode, the dynamics about the equivalent control components are feasible to be derived by solving the sliding mode equations. Following that another set of state equations about the equivalent control components themselves are derived, aiming to form a MRAS with the rotor speed as the adapting parameter. The references of the state variables in the MRAS are provided by filtering out the high-frequency components in the sliding mode functions in the SMO. Meanwhile, a crude value of the rotor speed, calculated directly from the equivalent control components, are fed forward into the speed adaptation mechanism in the MRAS to improve the dynamic performance of the speed estimation. As shown through simulation and experiments, this proposed combined speed observation scheme exhibits better stable and dynamic performance and satisfactory parameter robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Oukaci A, Toufouti R, Dib D, Atarsia L (2017) Comparison performance between sliding mode control and nonlinear control, application to induction motor. Electr Eng 99:33–45

    Article  Google Scholar 

  2. Sung W, Shin J, Jeong Y (2012) Energy-efficient and robust control for high-performance induction motor drive with an application in electric vehicles. IEEE Trans Veh Technol 61(8):3394–3405

    Article  Google Scholar 

  3. Nisha GK, Lakaparampil ZV, Ushakumari S (2017) Effect of power factor on torque capability of FOC induction machine in field weakening region for propulsion systems. Electr Eng 99:1065–1072

    Article  Google Scholar 

  4. Merabet A, Tanvir AA, Beddek K (2017) Torque and state estimation for real-time implementation of multivariable control in sensorless induction motor drives. IET Electr Power Appl 11(4):653–663

    Article  Google Scholar 

  5. Tabbache B, Rizoug N, Benbouzid MEH, Kheloui A (2013) A control reconfiguration strategy for post-sensor FTC in induction motor-based EVs. IEEE Trans Veh Technol 62(3):965–971

    Article  Google Scholar 

  6. Kumar R, Das S, Chattopadhyay AK (2016) Comparative assessment of two different model reference adaptive system schemes for speed-sensorless control of induction motor drives. IET Electr Power Appl 10(2):141–154

    Article  Google Scholar 

  7. Diab AAZ (2017) Implementation of a novel full-order observer for speed sensorless vector control of induction motor drives. Electr Eng 99:907–921

    Article  Google Scholar 

  8. Zhang X (2013) Sensorless induction motor drive using indirect vector controller and sliding-mode observer for electric vehicles. IEEE Trans Veh Technol 62(7):3010–3018

    Article  Google Scholar 

  9. Kumar R, Das S, Syam P, Chattopadhyay AK (2015) Review on model reference adaptive system for sensorless vector control of induction motor drives. IET Electr Power Appl 9(7):496–511

    Article  Google Scholar 

  10. Zhao L, Huang J, Chen J, Ye M (2015) A parallel speed and rotor time constant identification scheme for indirect field oriented induction motor drives. IEEE Trans Power Electron 31(9):6494–6503

    Article  Google Scholar 

  11. Lascu C, Boldea I, Blaabjerg F (2009) A class of speed-sensorless sliding-mode observers for high-performance induction motor drives. IEEE Trans. Ind. Electron. 56(9):3394–3404

    Article  Google Scholar 

  12. Sun W, Yu Y, Wang G, Li B, Xu D (2015) Design method of adaptive full order observer with or without estimated flux error in speed estimation algorithm. IEEE Trans Power Electron 31(3):2609–2626

    Article  Google Scholar 

  13. Ravi Teja AV, Chakraborty C, Maiti S, Hori Y, Hori Y (2012) A new model reference adaptive controller for four quadrant vector controlled induction motor drives. IEEE Trans. Ind. Electron 59(10):3575–3767

    Article  Google Scholar 

  14. Zhao L, Huang J, Chen J, Ye M (2016) A parallel and rotor speed time constant identification scheme for indirect field oriented induction motor drives. IEEE Trans Power Electron 31(9):6494–6503

    Article  Google Scholar 

  15. Ide K, Ha J-I, Sawamura M (2006) A hybrid speed estimator of flux observer for induction motor drives. IEEE Trans. Ind. Electron. 53(1):130–137

    Article  Google Scholar 

  16. Basic D, Malrait F, Rouchon P (2011) Current controller for low-frequency signal injection and rotor flux position tracking at low speeds. IEEE Trans. Ind. Electron. 58(9):4010–4022

    Article  Google Scholar 

  17. Sun W, Gao J, Liu X, Yu Y etc (2016) Inverter nonlinear error compensation using feedback gains and self-tuning estimated current error in adaptive full-order observer. IEEE Trans. Ind. Appl. 52(1):472–482

    Article  Google Scholar 

  18. Wang F, Zhang Z, Wang J, Rodriguez J (2017) Sensorless model-based PCC for induction machine. IET Electr Power Appl 11(5):885–892

    Article  Google Scholar 

  19. Usta MA, Qkumus HI, Kahveci H (2017) A simplified three-level SVM-DTC induction motor drive with speed and stator resistance estimation based on extended Kalman filter. Electr Eng 99:707–720

    Article  Google Scholar 

  20. Harnefors L, Hinkkanen M (2008) Completer stability of reduced-order and full-order observers for sensorless IM drives. IEEE Trans. Ind. Electron. 55(3):1319–1329

    Article  Google Scholar 

  21. Smith AN, Gadoue SM, Finch JW (2016) Improved rotor flux estimation at low speeds for torque MRAS-based sensorless induction motor drives. IEEE Trans Energy Convers 31(1):270–282

    Article  Google Scholar 

  22. Benlaloui I, Drid S, Chrifi-Alaoui L, Ouriagli M (2015) Implementation of a new MRAS speed sensorless vector control of induction machine. IEEE Trans Energy Convers 30(2):588–595

    Article  Google Scholar 

  23. Utkin VI (1993) Sliding mode control design principles and applications to electric drives. IEEE Trans. Ind. Electron 40(1):23–36

    Article  Google Scholar 

  24. Derdiyok A, Basci A (2016) Speed estimation of an induction machine based on designed Lyapunov candidate functions. Electr Eng 98:67–75

    Article  Google Scholar 

  25. Vieira RP, Gastaldini CC, Azzolin RZ, Grundling HA (2014) Sensorless sliding-mode rotor speed observer of induction machines based on magnetizing current estimation. IEEE Trans. Ind. Electron. 61(9):4573–4582

    Article  Google Scholar 

  26. Lascu C, Boldea I, Blaabjerg F (2006) Comparative study of adaptive and inherently sensorless observers for variable-speed induction-motor drives. IEEE Trans. Ind. Electron. 53(1):57–65

    Article  Google Scholar 

  27. Yang S, Ding D, Li X, Xie Z, Zhang X, Chang L (2017) A novel online parameter estimation method for indirect field oriented induction motor drives. IEEE Trans Energy Convers 32(4):1562–1573

    Article  Google Scholar 

  28. Fallaha CJ, Saad M, Kanaan HY, Al-Haddad K (2011) Sliding-mode robot control with exponential reaching law. IEEE Trans. Ind. Electron. 58(2):600–610

    Article  Google Scholar 

  29. Sul SK (1989) A novel technique of rotor resistance estimation considering variation of mutual inductance. IEEE Trans Ind Appl 25(4):578–587

    Article  Google Scholar 

  30. Zaky MS, Khater MM, Shokralla SS, Yasin HA (2009) Widespeed-range estimation with online parameter identification schemes of sensorless induction motor drives. IEEE Trans. Ind. Electron. 56(5):1699–1707

    Article  Google Scholar 

  31. Lei W, Deng X, Hu K, Zhang X, Wang K (2010) A novel parameter identification method for induction motor. In: Proceedings of ICMTMA, Changsha, pp 265–268

  32. Sonnaillon MO, Bisheimer G, Angelo CD, Garcia GO (2010) Online sensorless induction motor termperature monitoring. IEEE Trans Energy Convers 25(2):273–280

    Article  Google Scholar 

  33. Dittrich A (1994) Parameter sensitivity of procedures for on-line adaptation of the rotor time constant of induction machines with field oriented control. IEE Proc. Elect. Power Appl 141(6):353–359

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Li, X., Xie, Z. et al. A combined speed estimation scheme for indirect vector-controlled induction motors. Electr Eng 100, 2243–2252 (2018). https://doi.org/10.1007/s00202-018-0699-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-018-0699-3

Keywords

Navigation