Advertisement

Electrical Engineering

, Volume 100, Issue 2, pp 1047–1058 | Cite as

Adaptation of PI controller used with combination of perturbation and observation method and feedback method for DFIG

  • Basem E. Elnaghi
  • Fathy A. Elkader
  • Mohamed M. Ismail
  • Ahmed E. Kalas
Original Paper

Abstract

Due to the growing of electrical energy demand, wind energy is receiving much interest all over the world. This paper presents a new technique using fuzzy genetic algorithm, and ANFIS of the Optimization PI controller systems using different artificial Intelligent techniques is also included in this paper. The model using P&Q method and FB method is implemented in MATLAB/SIMULINK. Simulation results show the feasibility and robustness of the new proposed techniques.

Keywords

Maximum power point tracking (MPPT) DFIG ANFIGS P&Q method PI Fuzzy GA and PSO 

List of symbols

\(\rho \)

Derivative symbol

\(v_{\mathrm{ds}},v_{\mathrm{qs}}\)

Stator voltages in DQ axis reference frame

\(v_{\mathrm{dr}},v_{\mathrm{qr}}\)

Rotor voltages in DQ axis reference frame

\(i_{\mathrm{ds}},i_{\mathrm{qs}}\)

Stator currents in DQ axis reference frame

\(i_{\mathrm{dr}},i_{\mathrm{qr}} \)

Rotor currents in DQ axis reference frame

\(\phi _{\mathrm{ds}},\phi _{\mathrm{qs}}\)

Stator flux linkages in DQ axis reference frame

\(\phi _{\mathrm{dr}},\phi _{\mathrm{qr}}\)

Rotor flux linkages in DQ axis reference frame

\(\alpha ,\beta \)

Alpha and beta axis reference frame symbol

\(P_{\mathrm{s}},Q_{\mathrm{s}} \)

Stator active, reactive power

\(P_{\mathrm{r}},Q_{\mathrm{r}} \)

Rotor active, reactive power

\(R_{\mathrm{s}},R_{\mathrm{r}} \)

Stator and rotor resistance per phase

\(\omega _{e},\omega _{r}\)

Supply and rotor flux angle

\(L_\mathrm{s},L_\mathrm{r}\)

Stator and rotor inductance

\(L_{\mathrm{ls}},L_{\mathrm{lr}},L_\mathrm{m}\)

Stator, rotor leakage inductance, and magnetizing

Inductance

\(T_\mathrm{e}\)

Electromagnetic torque

P

Number of poles

\(V_{\mathrm{dc}}\)

DC-link voltage

ANFIGS

Adaptive neuro-fuzzy inference system

References

  1. 1.
    Committee on Environmental Impacts of Wind Energy Projects (2007) Environmental impacts of wind energy projects. The National Academies Press, WashingtonGoogle Scholar
  2. 2.
    Report of New and Renewable Energy Authority. http://www.nrea.gov.eg. Last access 20 Oct 2014
  3. 3.
    Thongam JS, Ouhrouche M (2014) MPPT control methods in wind energy conversion systems. http://www.intechopen.com. Last access 22 Oct 2014
  4. 4.
    Acharya P (2013) Small scale maximum power point tracking power converter for developing country application. Master of Engineering, University of Canterbury, ChristchurchGoogle Scholar
  5. 5.
    Alaboudy AHK, Daoud AA, Desouky SS, Salem AA (2013) Converter controls and flicker study of PMSG-based grid connected wind turbines. Ain Shams Eng J 4(1):75–91CrossRefGoogle Scholar
  6. 6.
    Chinchilia M, Arnaltes S, Burgos J (2006) Control of permanent-magnet generator applied to variable-speed wind-energy systems connected to the grid. IEEE Trans Energy Convers 21(1):130–135CrossRefGoogle Scholar
  7. 7.
    Villanueva I, Ponce P, Molina A (2015) Interval type 2 fuzzy logic controller for rotor voltage of a doubly-fed induction generator and pitch angle of wind turbine blades. IFAC-Papers On-Line 48(3):2195–2202CrossRefGoogle Scholar
  8. 8.
    Muller S, Deicke M, De Doncker RW (2002) Doubly fed induction generator systems for wind turbines. IEEE Ind Appl Mag 8(3):26–33CrossRefGoogle Scholar
  9. 9.
    Tan K, Islam S (2004) Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors. IEEE Trans Energy Convers 19(2):392–399CrossRefGoogle Scholar
  10. 10.
    Daoud AA, Dessouky SS, Salem AA (2011) Control scheme of PMSG based wind turbine for utility network connection. In: 10th EEEIC Proceedings, Rome. 8–10 May 2011Google Scholar
  11. 11.
    Hansen AD, Iov F, Sørensen P, Blaabjerg F (2004) Overall control strategy of variable speed doubly-fed induction generator wind turbine. In: Nordic wind power conference. 1–2 Mar 2004Google Scholar
  12. 12.
    Mei F, Pal B (2007) Modal analysis of grid-connected doubly fed induction generators. IEEE Trans Energy Convers 22(3):728–736CrossRefGoogle Scholar
  13. 13.
    Xu L, Wang Y (2007) Dynamic modelling and control of DFIG-based wind turbines under unbalanced network conditions. IEEE Trans Power Syst 22(1):314–323CrossRefGoogle Scholar
  14. 14.
    Alaboudy AHK (2009) Power conditioning and performance enhancement of wind based distributed generation. Ph.D. thesis, Minia University, EgyptGoogle Scholar
  15. 15.
    Barakati SM, Kazerani M, Chen X (2005) A new wind turbine generation system based on matrix converter. In: Proceedings on IEEE PES General Meeting, pp 2083–2089Google Scholar
  16. 16.
    Wang Q, Chang L (2004) An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems. IEEE Trans Power Electron 19(5):1242–1249CrossRefGoogle Scholar
  17. 17.
    Thiringer T, Linders J (1993) Control by variable rotor speed of a fixed pitch wind turbine operating in a wide speed range. IEEE Trans Energy Convers 8(3):520–526CrossRefGoogle Scholar
  18. 18.
    Koutroulis E, Kalaitzakis K, Voulgaris NC (2001) Development of a microcontroller-based, photovoltaic maximum power point tracking control system. IEEE Trans Power Electron 16(1):46–54CrossRefGoogle Scholar
  19. 19.
    Astrom K, Hagglund T (1995) PID controllers: theory, design and tuning. Instrument Society of America, Research Triangle ParkGoogle Scholar
  20. 20.
    Astroum J, Wittenmark B (1995) Adaptive control. Addison-Wesley, BostonGoogle Scholar
  21. 21.
    Yager RR, Filer DP (1994) Essentials of fuzzy modelling and control. Wiley, HobokenGoogle Scholar
  22. 22.
    Mendel JM (1995) Fuzzy logic systems for engineering: a tutorial. Proc IEEE 83:345–377CrossRefGoogle Scholar
  23. 23.
    Wang LX (1994) Adaptive fuzzy system and control design and stability analysis. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  24. 24.
    Pattaradej T, Chen G, Sooraksa P (2002) Design and implementation of fuzzy P2ID control of a bicycle robot. Integr Comput Aided Eng 9(4):29–31Google Scholar
  25. 25.
    Tang W, Chen G, Lu R (2001) A modified fuzzy PI controller for a flexible-joint robot arm with uncertainties. Fuzzy Sets Syst 118:109–119MathSciNetCrossRefGoogle Scholar
  26. 26.
    Reznik L, Ghanayem O, Bourmistrov A (2002) PID pulse fuzzy controller structures as a design for industrial application. Eng Appl Artif Intell 13(4):419–430CrossRefGoogle Scholar
  27. 27.
    Chen GR, Pham TT (2000) Introduction to fuzzy sets, fuzzy logic, fuzzy control system. CRC Press, Boca RatonCrossRefGoogle Scholar
  28. 28.
    Petrov M, Ganchev I, Dragotinov I (1999) Design aspects of fuzzy PID control. In: International conference on soft computing, Mendel “99”, Brno, Czech Republic, pp. 277–282. 9–12 June 1999Google Scholar
  29. 29.
    Suganthi L, Iniyan S, Samuel AA (2015) Applications of fuzzy logic in renewable energy systems—a review. Renew Sustain Energy Rev 48:585–607CrossRefGoogle Scholar
  30. 30.
    Ismail MM, Bendary AF (2016) Protection of DFIG wind turbine using fuzzy logic control. Alexandria Eng J 55(2):941–949Google Scholar
  31. 31.
    Dandil B (2009) Fuzzy neural network IP controller for robust position control of induction motor drive. Expert Syst Appl 36(3):4528–4534Google Scholar
  32. 32.
    Miloudi A, Al-Radadi EA, Draou AD (2007) A variable gain PI controller used for speed control of a direct torque neuro fuzzy controlled induction machine drive. Turk J Electr Eng 15(1):37–49Google Scholar
  33. 33.
    Rani MR (2012) Multi-objective optimization of PID controller parameters using genetic algorithm. Faculty of Electrical Engineering University Technology MalaysiaGoogle Scholar
  34. 34.
    Mallick SK, Khan MA (2011) Study of the design and tuning methods of PID controllers based on fuzzy logic and genetic algorithm. Thesis, Department of Electronics and Communication Engineering National Institute of TechnologyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Basem E. Elnaghi
    • 1
  • Fathy A. Elkader
    • 2
  • Mohamed M. Ismail
    • 3
  • Ahmed E. Kalas
    • 4
  1. 1.Faculty of EngineeringSuez Canal UniversityIsmailiaEgypt
  2. 2.Faculty of EngineeringMenoufia UniversityAl MinufyaEgypt
  3. 3.Faculty of EngineeringHelwan UniversityHelwanEgypt
  4. 4.Faculty of EngineeringPort Said UniversityPort SaidEgypt

Personalised recommendations