Electrical Engineering

, Volume 100, Issue 2, pp 1009–1019 | Cite as

Identification of coherent areas using a power spectral density algorithm

  • J. J. Ayon
  • Emilio Barocio
  • I. R. Cabrera
  • Ramón Betancourt
Original Paper
  • 115 Downloads

Abstract

The identification of coherent areas is an important step to fortify the power system against the potential spread of cascading failures. This processing task helps to establish the preliminary strategies to implement online control methodologies that increase the power system reliability. In this regards, a methodology to identify coherent areas based on sliding power spectral density algorithm is presented in this paper. A coherency index is estimated from self- and cross-power spectral densities information in order to identify the coherent areas for a specific frequency related to an inter-area oscillation mode. In order to facilitate and automatize the process, an identification criterion based in the coherency index is proposed. This enables the proposed approach to be applied offline or online. In addition, the computation of the self-power spectral density using a sliding window opens the possibility to detect the onset of transient processes. Synthetic signals and two test power systems with different dynamic characteristics are used to evaluate the potential application in large systems.

Keywords

Identification of coherent areas Electromechanical oscillations Spectral coherence Power spectral density algorithm Welch method 

References

  1. 1.
    Klein M, Rogers GJ, Kundur P (1991) A fundamental study of inter-area oscillations in power systems. IEEE Trans Power Syst 6:914–921CrossRefGoogle Scholar
  2. 2.
    Senroy N, Heydt GT (2006) A conceptual framework for the controlled islanding of interconnected power systems. IEEE Trans Power Syst 21(2):1005–1006CrossRefGoogle Scholar
  3. 3.
    Zwe-Lee G (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans Power Syst 18(3):2122–2123Google Scholar
  4. 4.
    Andrade Manuel A, Messina AR, Rivera CA, Olguin D (2004) Identification of instantaneous attributes of torsional shaft signals using the Hilbert transform. IEEE Trans Power Syst 19(3):1422–1429CrossRefGoogle Scholar
  5. 5.
    You H, Vittal V, Wang X (2004) Slow coherency based-island. IEEE Trans Power Syst 19(1):483–491CrossRefGoogle Scholar
  6. 6.
    Jonsson M, Begovic M, Daalder J (2004) A system protection scheme concept to counter interarea oscillations. IEEE Trans Power Deliv 19(4):1473–1482CrossRefGoogle Scholar
  7. 7.
    Senroy N, Heydt GT, Vittal V (2006) Decision tree assisted controlled islanding. IEEE Trans Power Syst 21(4):1790–1797CrossRefGoogle Scholar
  8. 8.
    Ding L, Gonzalez FM, Wall P, Terzija V (2013) Two-step spectral clustering controlled islading algorithm. IEEE Trans Power Syst 28(1):75–83CrossRefGoogle Scholar
  9. 9.
    Hiyama T, Suzuki N, Funakoshi T (2000) On-line coherency monitoring of power system oscillations. IEEE PES Summer Meet 3:839–1844Google Scholar
  10. 10.
    Jonsson M, Begovic M, Daalder J (2004) A new method suitable for real-time generator coherency. IEEE Trans Power Syst 19(3):1602–1611CrossRefGoogle Scholar
  11. 11.
    Messina AR (2010) Inter-area oscillations in power systems: a nonlinear and nonstationary perspective, power electronics and power systems. Spinger, BerlinGoogle Scholar
  12. 12.
    Senroy N (2008) Generator coherency using the Hilbert–Huang transform. IEEE Trans Power Syst 23(4):1701–1707CrossRefGoogle Scholar
  13. 13.
    Krisna AK, Chauhiri B, Thornill N, Pal B (2005) Coherency identification in power systems through principal component analysis. IEEE Trans Power Syst 20(3):1658–1660CrossRefGoogle Scholar
  14. 14.
    Ariff MAM, Pal BC (2013) Coherency identification in interconnected power system—An independent component analysis approach. IEEE Trans Power Syst 28(2):1747–1755CrossRefGoogle Scholar
  15. 15.
    Jiang Tao, Jia H, Yuan H, Zhou N, Li Fangxing (2016) Projection pursuit: a general methodology of wide-area coherency detection in bulk power grid. IEEE Trans Power Syst 31(4):2776–2786Google Scholar
  16. 16.
    Emilio Barocio, Pal Bikash C, Thornhill NF, Messina AR (2015) A dynamic mode decomposition framework for global power system oscillation analysis. IEEE Trans Power Syst 30(6):2902–2912CrossRefGoogle Scholar
  17. 17.
    Susuki Y, Mezic I (2011) Nonlinear Koopman modes and coherency identification of coupled swing dynamics. IEEE Trans Power Syst 26(4):1894–1904CrossRefGoogle Scholar
  18. 18.
    Juarez C, Messina AR, Castellanos R, Espinoza-Perez G (2011) Characterization of multi-machine system behavior using a hierarchical trajectory cluster analysis. IEEE Trans Power Syst 26:972–981CrossRefGoogle Scholar
  19. 19.
    Wei Jin, Kundur D, Butler-Purry KL (2015) A novel bio-inspired technique for rapid real-time generator coherency identification. IEEE Trans Smart Grid 6(1):178–188CrossRefGoogle Scholar
  20. 20.
    Agrawal R, Thukaram D (2013) Support vector clustering-based direct coherency identification of generators in a multi-machine power system. IET Gener Transm Distrib 7(12):1357–1366CrossRefGoogle Scholar
  21. 21.
    Trudnowski DJ (2008) Estimating electromechanical mode-shape from synchrophasor measurements. IEEE Trans Power Syst 23(3):1188–1195CrossRefGoogle Scholar
  22. 22.
    Zhou N (2016) A cross-coherence method for detecting oscillations. IEEE Trans Power Syst 31(1):623–631CrossRefGoogle Scholar
  23. 23.
    Welch PD (1967) The use of fast transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust AU–15:70–73CrossRefGoogle Scholar
  24. 24.
    Zang Y, Halliday D, Jiang P, Liu X, Feng J (2006) Detecting time-dependent coherence between non-stationary electrophysiological signals—a combined statistical and time–frequency approach. J Neurosci Methods 156:322–332CrossRefGoogle Scholar
  25. 25.
    Lesniak A, Niitsuma H (1998) Time-frequency coherency analysis of three-component crosshole seismic data for arrival detection. Geophysics 63(6):1847–1857CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • J. J. Ayon
    • 1
  • Emilio Barocio
    • 2
  • I. R. Cabrera
    • 3
  • Ramón Betancourt
    • 4
  1. 1.Department of Industrial ProcessesTechnological University of JaliscoGuadalajaraMexico
  2. 2.Graduate Program in Electrical EngineeringUniversity of GuadalajaraGuadalajaraMexico
  3. 3.Department of Electrical EngineeringThe Center for Research and Advanced Studies of the IPNMexicoMexico
  4. 4.Department of Electromechanical EngineeringUniversity of ColimaColimaMexico

Personalised recommendations