Skip to main content
Log in

Identification of coherent areas using a power spectral density algorithm

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The identification of coherent areas is an important step to fortify the power system against the potential spread of cascading failures. This processing task helps to establish the preliminary strategies to implement online control methodologies that increase the power system reliability. In this regards, a methodology to identify coherent areas based on sliding power spectral density algorithm is presented in this paper. A coherency index is estimated from self- and cross-power spectral densities information in order to identify the coherent areas for a specific frequency related to an inter-area oscillation mode. In order to facilitate and automatize the process, an identification criterion based in the coherency index is proposed. This enables the proposed approach to be applied offline or online. In addition, the computation of the self-power spectral density using a sliding window opens the possibility to detect the onset of transient processes. Synthetic signals and two test power systems with different dynamic characteristics are used to evaluate the potential application in large systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Klein M, Rogers GJ, Kundur P (1991) A fundamental study of inter-area oscillations in power systems. IEEE Trans Power Syst 6:914–921

    Article  Google Scholar 

  2. Senroy N, Heydt GT (2006) A conceptual framework for the controlled islanding of interconnected power systems. IEEE Trans Power Syst 21(2):1005–1006

    Article  Google Scholar 

  3. Zwe-Lee G (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans Power Syst 18(3):2122–2123

    Google Scholar 

  4. Andrade Manuel A, Messina AR, Rivera CA, Olguin D (2004) Identification of instantaneous attributes of torsional shaft signals using the Hilbert transform. IEEE Trans Power Syst 19(3):1422–1429

    Article  Google Scholar 

  5. You H, Vittal V, Wang X (2004) Slow coherency based-island. IEEE Trans Power Syst 19(1):483–491

    Article  Google Scholar 

  6. Jonsson M, Begovic M, Daalder J (2004) A system protection scheme concept to counter interarea oscillations. IEEE Trans Power Deliv 19(4):1473–1482

    Article  Google Scholar 

  7. Senroy N, Heydt GT, Vittal V (2006) Decision tree assisted controlled islanding. IEEE Trans Power Syst 21(4):1790–1797

    Article  Google Scholar 

  8. Ding L, Gonzalez FM, Wall P, Terzija V (2013) Two-step spectral clustering controlled islading algorithm. IEEE Trans Power Syst 28(1):75–83

    Article  Google Scholar 

  9. Hiyama T, Suzuki N, Funakoshi T (2000) On-line coherency monitoring of power system oscillations. IEEE PES Summer Meet 3:839–1844

  10. Jonsson M, Begovic M, Daalder J (2004) A new method suitable for real-time generator coherency. IEEE Trans Power Syst 19(3):1602–1611

    Article  Google Scholar 

  11. Messina AR (2010) Inter-area oscillations in power systems: a nonlinear and nonstationary perspective, power electronics and power systems. Spinger, Berlin

    Google Scholar 

  12. Senroy N (2008) Generator coherency using the Hilbert–Huang transform. IEEE Trans Power Syst 23(4):1701–1707

    Article  Google Scholar 

  13. Krisna AK, Chauhiri B, Thornill N, Pal B (2005) Coherency identification in power systems through principal component analysis. IEEE Trans Power Syst 20(3):1658–1660

    Article  Google Scholar 

  14. Ariff MAM, Pal BC (2013) Coherency identification in interconnected power system—An independent component analysis approach. IEEE Trans Power Syst 28(2):1747–1755

    Article  Google Scholar 

  15. Jiang Tao, Jia H, Yuan H, Zhou N, Li Fangxing (2016) Projection pursuit: a general methodology of wide-area coherency detection in bulk power grid. IEEE Trans Power Syst 31(4):2776–2786

  16. Emilio Barocio, Pal Bikash C, Thornhill NF, Messina AR (2015) A dynamic mode decomposition framework for global power system oscillation analysis. IEEE Trans Power Syst 30(6):2902–2912

    Article  Google Scholar 

  17. Susuki Y, Mezic I (2011) Nonlinear Koopman modes and coherency identification of coupled swing dynamics. IEEE Trans Power Syst 26(4):1894–1904

    Article  Google Scholar 

  18. Juarez C, Messina AR, Castellanos R, Espinoza-Perez G (2011) Characterization of multi-machine system behavior using a hierarchical trajectory cluster analysis. IEEE Trans Power Syst 26:972–981

    Article  Google Scholar 

  19. Wei Jin, Kundur D, Butler-Purry KL (2015) A novel bio-inspired technique for rapid real-time generator coherency identification. IEEE Trans Smart Grid 6(1):178–188

    Article  Google Scholar 

  20. Agrawal R, Thukaram D (2013) Support vector clustering-based direct coherency identification of generators in a multi-machine power system. IET Gener Transm Distrib 7(12):1357–1366

    Article  Google Scholar 

  21. Trudnowski DJ (2008) Estimating electromechanical mode-shape from synchrophasor measurements. IEEE Trans Power Syst 23(3):1188–1195

    Article  Google Scholar 

  22. Zhou N (2016) A cross-coherence method for detecting oscillations. IEEE Trans Power Syst 31(1):623–631

    Article  Google Scholar 

  23. Welch PD (1967) The use of fast transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust AU–15:70–73

    Article  Google Scholar 

  24. Zang Y, Halliday D, Jiang P, Liu X, Feng J (2006) Detecting time-dependent coherence between non-stationary electrophysiological signals—a combined statistical and time–frequency approach. J Neurosci Methods 156:322–332

    Article  Google Scholar 

  25. Lesniak A, Niitsuma H (1998) Time-frequency coherency analysis of three-component crosshole seismic data for arrival detection. Geophysics 63(6):1847–1857

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Ayon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayon, J.J., Barocio, E., Cabrera, I.R. et al. Identification of coherent areas using a power spectral density algorithm. Electr Eng 100, 1009–1019 (2018). https://doi.org/10.1007/s00202-017-0564-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-017-0564-9

Keywords

Navigation