Advertisement

Electrical Engineering

, Volume 100, Issue 2, pp 1133–1146 | Cite as

Coordinated distribution network control of tap changer transformers, capacitors and PV inverters

  • Oğuzhan Ceylan
  • Guodong Liu
  • Kevin Tomsovic
Original Paper

Abstract

A power distribution system operates most efficiently with voltage deviations along a feeder kept to a minimum and must ensure all voltages remain within specified limits. Recently with the increased integration of photovoltaics, the variable power output has led to increased voltage fluctuations and violation of operating limits. This paper proposes an optimization model based on a recently developed heuristic search method, grey wolf optimization, to coordinate the various distribution controllers. Several different case studies on IEEE 33 and 69 bus test systems modified by including tap changing transformers, capacitors and photovoltaic solar panels are performed. Simulation results are compared to two other heuristic-based optimization methods: harmony search and differential evolution. The simulation results show the effectiveness of the method and indicate the usage of reactive power outputs of PVs facilitates better voltage magnitude profile.

Keywords

Smart grid Grey wolf optimization Distributed generation Voltage regulation 

Notes

Acknowledgements

This work was sponsored by the Office of Electricity Delivery & Energy Reliability, US Department of Energy under Contract No. DE-AC05-00OR 22725 with UT-Battelle and conducted at ORNL and UT Knoxville. This work also made use of Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation and the Department of Energy under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program. The first author would like to thank the Scientific and Technological Research Council of Turkey (TUBITAK) for its financial support.

References

  1. 1.
    U.N.E. Programme, Global trends in renewable energy investment 2016, frankfurt school-unep centre bnef. Tech. rep. (2016). Accessed 10 Apr 2016Google Scholar
  2. 2.
    Katiraei F, Aguero JR (2011) Solar PV integration challenges. IEEE Power Energy Mag 9(3):62CrossRefGoogle Scholar
  3. 3.
    Gonen T (2014) Electric power distribution engineering. CRC Press, Boca RatonGoogle Scholar
  4. 4.
    GmbH JSE (2016) Voltage regulated distribution transformer. Tech. rep. Accessed 10 Apr 2016Google Scholar
  5. 5.
    Mouli GRC, Bauer P, Wijekoon T, Panosyan A, Barthlein EM (2015) Design of a power-electronic-assisted OLTC for grid voltage regulation. IEEE Trans Power Deliv 30(3):1086CrossRefGoogle Scholar
  6. 6.
    Rule 21 smart inverter working group technical reference materials, california energy commission. http://www.energy.ca.gov/electricity_analysis/rule21/ (2016). Accessed 12 Dec 2016
  7. 7.
    Ceylan O, Liu G, Xu Y, Tomsovic K (2014) Distribution system voltage regulation by distributed energy resources. In: 2014 North American power symposium (NAPS), Pullman, WA, pp 1–5. doi: 10.1109/NAPS.2014.6965466
  8. 8.
    Liu G, Ceylan O, Xu Y, Tomsovic K (2015) Optimal voltage regulation for unbalanced distribution networks considering distributed energy resources. In: 2015 IEEE power & energy society general meeting, Denver, CO, pp 1–5. doi: 10.1109/PESGM.2015.7286473
  9. 9.
    Rao SS (2009) Engineering optimization: theory and practice, 4th edn. Wiley, New YorkCrossRefGoogle Scholar
  10. 10.
    Holland HJ (1992) Genetic algorithms. Sci Am 267:66–72CrossRefGoogle Scholar
  11. 11.
    Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341. doi: 10.1023/A:1008202821328 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zong WG, Joong HK, Loganathan GV (2001) Simulation 76(2):60. http://sim.sagepub.com/content/76/2/60.abstract
  13. 13.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, 1995, Perth, WA, vol 4, pp 1942–1948. doi: 10.1109/ICNN.1995.488968
  14. 14.
    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRefGoogle Scholar
  15. 15.
    Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371CrossRefGoogle Scholar
  16. 16.
    Rios LM, Sahinidis NV (2012) Derivative-free optimization: a review of algorithms and comparison of software implementations. J Glob Optim 56(3):1247. doi: 10.1007/s10898-012-9951-y MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhu Y, Tomsovic K (2007) Optimal distribution power flow for systems with distributed energy resources. Int J Electr Power Energy Syst 29(3):260CrossRefGoogle Scholar
  18. 18.
    Ochoa LF, Dent CJ, Harrison GP (2010) Distribution network capacity assessment: variable DG and active networks. IEEE Trans Power Syst 25(1):87CrossRefGoogle Scholar
  19. 19.
    Borghetti A, Bosetti M, Grillo S, Massucco S, Nucci CA, Paolone M, Silvestro F (2010) Short-term scheduling and control of active distribution systems with high penetration of renewable resources. IEEE Syst J 4(3):313CrossRefGoogle Scholar
  20. 20.
    Calderaro V, Conio G, Galdi V, Massa G, Piccolo A (2014) Optimal decentralized voltage control for distribution systems with inverter-based distributed generators. IEEE Trans Power Syst 29(1):230CrossRefGoogle Scholar
  21. 21.
    Agalgaonkar YP, Pal BC, Jabr RA (2014) Distribution voltage control considering the impact of PV generation on tap changers and autonomous regulators. IEEE Trans Power Syst 29(1):182CrossRefGoogle Scholar
  22. 22.
    Kwang MAES, Lee Y (2008) Modern heuristic optimization techniques: theory and applications to power systems. Wiley, New YorkGoogle Scholar
  23. 23.
    Mohanty S, Subudhi B, Ray PK (2016) A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions. IEEE Trans Sustain Energy 7(1):181CrossRefGoogle Scholar
  24. 24.
    Sharma S, Bhattacharjee S, Bhattacharya A, Generation IET (2016) Grey wolf optimisation for optimal sizing of battery energy storage device to minimise operation cost of microgrid. Transm Distrib 10(3):625CrossRefGoogle Scholar
  25. 25.
    Jayakumar N, Subramanian S, Ganesan S, Elanchezhian EB (2016) Grey wolf optimization for combined heat and power dispatch with cogeneration systems. Int J Electr Power Energy Syst 74:252CrossRefGoogle Scholar
  26. 26.
    Sulaiman MH, Mustaffa Z, Mohamed MR, Aliman O (2015) Using the gray wolf optimizer for solving optimal reactive power dispatch problem Appl. Soft Comput 32:286CrossRefGoogle Scholar
  27. 27.
    National grid load profiles. https://www9.nationalgridus.com/niagaramohawk/business/rates/5_load_profile.asp (2016). Accessed 03 Apr 2016
  28. 28.
    Nrel, measurement and data center. http://www.nrel.gov/midc/ (2016). Accessed 10 June 2016
  29. 29.
    Baran ME, Wu FF (1989) Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans Power Deliv 4(2):1401. doi: 10.1109/61.25627 CrossRefGoogle Scholar
  30. 30.
    Baran ME, Wu FF (1989) Optimal capacitor placement on radial distribution systems. IEEE Trans Power Deliv 4(1):725. doi: 10.1109/61.19265 CrossRefGoogle Scholar
  31. 31.
    Kersting WH (2012) Distribution system modeling and analysis. CRC Press, Boca RatonCrossRefzbMATHGoogle Scholar
  32. 32.
    Andreas A, Wilcox S (2016) Solar technology acceleration center (solartac), aurora, colorado (data). Tech. Rep. DA-5500-56491, NREL. doi: 10.5439/1052224
  33. 33.
    Lowry range solar station, colorado state land board. doi: 10.5439/1052550 (2014). Accessed 11 June 2016
  34. 34.
    Xcel energy comanche station. http://www.nrel.gov/midc/xecs (2011). Accessed 11 June 2016
  35. 35.
    Sun spot one san luis valley, colorado. http://www.nrel.gov/midc/ss1 (2010). Accessed 11 June 2016
  36. 36.
    Andreas A, Wilcox S (2016) Solar resource and meteorological assesment project (solrmap), rotating shadowband radiometer (rsr), los angeles, california (data). Tech. Rep. DA-5500-56502, NREL. doi: 10.5439/1052230
  37. 37.
    Solar resource and meteorological assesment project, tri-state, ecalante. doi: 10.5439/1052229 (2013). Accessed 11 June 2016
  38. 38.
    Wolpert DH, Macready WG (1995) No free lunch theorems for search. Technical Report SFI-TR-95-02-010, Santa Fe Institute, 1995. https://pdfs.semanticscholar.org/bfd2/88d7adb887ea0c91d14131f4cb78d675f0a4.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Istanbul Kemerburgaz UniversityIstanbulTurkey
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA
  3. 3.University of Tennessee KnoxvilleKnoxvilleUSA

Personalised recommendations