Skip to main content
Log in

Synthesis of vertically aligned carbon nanofibers using inductively coupled plasma-enhanced chemical vapor deposition

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This journal paper reports a highly reliable and efficient method for the growth of vertically aligned carbon nanofibers. The inductively coupled plasma-enhanced chemical vapor deposition method utilizes a low substrate temperature (approx. 650 \({^{\circ }}\)C) for the growth purpose using toluene as carbon source. Carbon nanofibers are characterized using SEM (scanning electron microscopy), EDX (energy-dispersive X-ray) and Raman spectroscopy. Uniform carbon nanofibers are grown on different substrates. The results further show that the use of catalyst is not mandatory to grow the carbon nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Grzybowski BA, Huck WTS (2016) The nanotechnology of life-inspired systems. Nat Nanotechnol 11:585–592

    Article  Google Scholar 

  2. Beumer K (2016) Broadening nanotechnology’s impact on development. Nat Nanotechnol 11:398–400

    Article  Google Scholar 

  3. Dubkov S, Trifonov A, Shaman Y, Pavlov A, Shulyat’ev A, Skorik S, Kirilenko EP, Rygalin B (2016) Growth of vertically aligned multiwalled carbon nanotubes forests on metal alloy Ni-Nb-N with low content of catalyst. J Phys 741(1):1–5

  4. Shoukat R, Khan MI (2017) Growth of nanotubes using IC-PECVD as benzene carbon carrier. Microsyst Technol 1–7

  5. Abdalla S, Al-Marzouki F, Al-Ghamdi AA, Abdel-Daiem A (2015) Different technical applications of carbon nanotubes. Nanoscale Res Lett 10:358

    Article  Google Scholar 

  6. Akasaka T, Watari F, Sato Y, Tohji K (2006) Apatite formation on carbon nanotubes. Mater Sci Eng C 26:675–678

    Article  Google Scholar 

  7. Wei HW, Leou KC, Wei MT, Lin YY, Tsai CH (2005) Effect of high-voltage sheath electric field and ion-enhanced etching on growth of carbon nanofibers in high-density plasma chemical-vapor deposition. J Appl Phys 98(4). doi:10.1063/1.1993776

  8. Melechko A, Merkulov VI, McKnight TE, Guillorn MA, Klein KL, Lowndes DH, Simpson ML (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 97(4). doi:10.1063/1.1857591

  9. Tzeng S-S, Wang P-L, Wu T-Y, Chen K-S, Chyou S-D, Lee W-T, Chen C-S (2011) Formation of loops on the surface of carbon nanofibers synthesized by plasma-enhanced chemical vapor deposition using an inductively coupled plasma reactor. J Mater Res 21:2440–2443

    Article  Google Scholar 

  10. Lee K-Y, Katayama M, Honda S, Kuzuoka T, Miyake T, Terao Y, Lee J-G, Mori H, Hirao T, Oura K (2003) Synthesis of aligned carbon nanofibers at 200 C. Jpn J Appl Phys 42(2):7B

    Google Scholar 

  11. Endo M, Hayashi T, Kim YA, Muramatsu H (2006) Development and application of carbon nanotubes. Jpn J Appl Phys 45(1):6A

    Google Scholar 

  12. Kariyawasam T (2005) Field emission of carbon nanotubes. Department of Physics, University of Cincinnati, Cincinnati

    Google Scholar 

  13. Kis A, Zettl A (2008) Nanomechanics of carbon nanotubes. Philos Trans A 366:1591

    Article  Google Scholar 

  14. Daenen M, de Fouw RD, Hamers B, Janssen PGA, Schouteden K, Veld MAJ (2003) The wondrous world of carbon nanotubes. Eindhoven University of Technology, Netherlands

    Google Scholar 

  15. Bingshe Xu, Li Tianbao, Liu Xuguang, Lin Xian, Li Jian (2007) Growth of well-aligned carbon nanotubes in a plasma system using ferrocene solution in ethanol. Thin Solid Films 515:6726–6729

    Article  Google Scholar 

  16. Point S, Minea T, Besland M-P, Granier A (2006) Characterization of carbon nanotubes and carbon nitride nanofibres synthesized by PECVD. Eur Phys J Appl Phys 34:157–163

    Article  Google Scholar 

  17. Teo KBK, Lee S-B, Chhowalla M, Semet V, Binh Vu Thien, Groening O, Castignolles M, Loiseau A, Pirio G, Legagneux P, Pribat D, Hasko DG, Ahmed H, Amaratunga GAJ, Milne WI (2003) Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres—how uniform do they grow? Nanotechnology 14:204

    Article  Google Scholar 

  18. Ralchenko Y, Kramida AE, Reader J (2010) NIST ASD Team

  19. Ford N (2007) Plasma enhanced growth of carbon nanotubes

  20. Wei S, Kanga WP, Davidson JL, Choi BK, Huang JH (2006) Vertically aligned carbon nanotube field emission devices fabricated by furnace thermal chemical vapor deposition at atmospheric pressure. J Vac Sci Technol B Microelectron Nanometer Struct 24:1190

    Article  Google Scholar 

  21. Xu B, Deng H, Dai Y, Yang B (2007) Novel aerosol method for aligned carbon nanotubes synthesis. Trans Nonferr Metals Soc China 17

  22. Xie S, Li W, Pan Z, Chang B, Sun L (2000) Carbon nanotube arrays. Mater Sci Eng A 286:11–15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Shoukat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoukat, R., Khan, M.I. Synthesis of vertically aligned carbon nanofibers using inductively coupled plasma-enhanced chemical vapor deposition. Electr Eng 100, 997–1002 (2018). https://doi.org/10.1007/s00202-017-0561-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-017-0561-z

Keywords

Navigation