Advertisement

Electrical Engineering

, Volume 100, Issue 2, pp 1205–1217 | Cite as

Control approach of a connected PV system under grid faults

  • Nejib Hamrouni
  • Moncef Jraidi
  • Amel Ghobber
  • Ahmed Dhouib
Original Paper

Abstract

This paper proposes a flexible power control of a three-phase grid-connected PV system which fulfills the PV converter operations under normal conditions and symmetrical grid voltage sags. This control approach can be configured in the PV converters and flexibly change from one to another mode during operation. In normal operation mode, a Maximal Power Point Tracking (MPPT) algorithm and PQ-control loop have been designed around the converters. Their aim is to maximize the PV power and to inject into the grid a current with low harmonic distortion, as well as energy at unity power factor. Under grid voltage dips, the PQ-control strategy has been changed within the grid voltage sag levels and the inverter rating currents. The MPPT control is deactivated, and the PV power has been reduced to the target value delivered by the inverter at the Point of Common Coupling. Case studies with simulations and experimental results have verified the effectiveness and flexibilities of the proposed power control strategy to release the advanced features.

Keywords

MPPT Current controller Grid faults PQ-control Grid-connected PV system Flexible control 

References

  1. 1.
    Milanovic JV, Djokic SZ (2003) Equipment sensitivity to disturbances in voltage supply. In: JIEEC, BilbaoGoogle Scholar
  2. 2.
    Teodorescu R, Liserre M, Rodriguez P (2011) Grid converters for photovoltaic and wind power systems. Wiley, LondonCrossRefGoogle Scholar
  3. 3.
    Yang Y, Wang H, Blaabjerg F (2014) Reactive power injection strategies for single phase photovoltaic systems considering grid requirements. In: 29 Annual IEEE-APECE, pp 371–378Google Scholar
  4. 4.
    Yang Y, Blaabjerg F, Zou Z (2013) Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems. IEEE Trans Ind Appl 49(5):2167–2176CrossRefGoogle Scholar
  5. 5.
    Cadaval ER, Spagnuolo G, Franquelo LG, Paja CAR, Suntio T, Xiao WM (2013) Grid-connected photovoltaic generation plants: components and operation. IEEE Ind Electron Mag 7(3):6–20CrossRefGoogle Scholar
  6. 6.
    Yang Y, Enjeti P, Blaabjerg F, Wang H (2013) Suggested grid code modifications to ensure wide-scale adoption of photovoltaic energy in distributed power generation systems. In: IEEE-IAS annual meeting, pp 1–8Google Scholar
  7. 7.
    Carnieletto R, Brandao DI, Farret FA, Simoes MG (2011) Smart grid initiative: a multifunctional single-phase voltage source inverter. IEEE Ind Appl Mag 17(5):27–35CrossRefGoogle Scholar
  8. 8.
    Yeh HG, Gayme DF, Low SH (2012) Adaptive VAR control for distribution circuits with photovoltaic generators. IEEE Trans Power Syst 27(3):1656–1663CrossRefGoogle Scholar
  9. 9.
    SMA Profitable Night Shift, Technical Information (2013). www.sma.de
  10. 10.
    Iov F, Hansen AD, Sorensen PE, Cutululis NA (2007) Mapping of grid faults and grid codes. Riso National Laboratory, Technical University of Denmark, RoskildeGoogle Scholar
  11. 11.
    Comitato Elettrotecnico Italiano (2011) Reference technical rules for connecting users to the active and passive LV distribution companies of electricity. In: CEI 0–21Google Scholar
  12. 12.
    Rodriguez P, Luna A, Munoz-Aguilar R, Corcoles F, Teodorescu R, Blaabjerg F (2011) Control of power converters in distributed generation applications under grid fault conditions. In: ECCE, pp 2649–2656Google Scholar
  13. 13.
    Azevedo MGS, Rodriguez P, Cavalcanti MC, Vázquez G, Neves FAS (2009) New control strategy to allow the photovoltaic systems operation under grid faults. In: COBEP, Brazilian, pp 196–201Google Scholar
  14. 14.
    Yang Y, Baabjerg F (2013) Low voltage ride through capability of a single phase photovoltaic system connected to the low voltage grid. Int J Photo Energy 2013:9Google Scholar
  15. 15.
    Kai D, Cheng KWE, Xue XD (2006) A novel detection method for voltage sags. In: ICPESA, pp 250–255Google Scholar
  16. 16.
    Lee DM, Habetler TG, Harley RG, Keister TL, Rostron JR (2007) A voltage sag supporter utilizing a PWM-switched auto transformer. IEEE Trans Power Electron 2(22):626–635CrossRefGoogle Scholar
  17. 17.
    Bae B, Lee J, Jeong J, Han B (2010) Line-interactive single phase dynamic voltage restorer with novel sag detection algorithm. IEEE Trans Power Deliv 4(25):2702–2709CrossRefGoogle Scholar
  18. 18.
    Fitzer C, Barnes M, Green P (2004) Voltage sag detection technique for a dynamic voltage restorer. IEEE Trans Ind Appl 1(40):203–212CrossRefGoogle Scholar
  19. 19.
    Casaro M, Martins DC (2008) Grid-connected PV system: introduction to behavior matching. In: PESC-IEEE, pp 951–956Google Scholar
  20. 20.
    Kjaer SB, Pedersen JK, Blaabjerg F (2002) Power inverter topologies for photovoltaic modules-a review. In: 37th IAS annual meeting conference, vol 2, pp 782–788Google Scholar
  21. 21.
    Azevedo GMS, Cavalcanti MC, Neves FAS, Rodriguez P (2007) Implementation of a grid connected photovoltaic system controlled by digital signal processor. In: COBEP, BlumenauGoogle Scholar
  22. 22.
    Kerekes T, Teodorescu R, Klumpner C, Sumner M, Floricau D, Rodriguez P (2009) Evaluation of three phase transformerless photovoltaic inverter topologies. Power Electron 24(9):2202–2211Google Scholar
  23. 23.
    Hernandez OCM, Enjeti PN (2005) A fast detection algorithm suitable for mitigation of numerous power quality disturbances. IEEE Trans Ind Appl 6(41):1684–1690CrossRefGoogle Scholar
  24. 24.
    Bae Y, Vu TK, Kim RY (2013) Implemental control strategy for grid stabilization of grid-connected PV system based on German grid code in symmetrical low-to-medium voltage network. IEEE Trans Energy Convers 3(28):619–631CrossRefGoogle Scholar
  25. 25.
    Arnold G (2011) Challenges of integrating multi-GW solar power into the German distribution grids. http://www.iwes.fraunhofer.de/
  26. 26.
    Chou SF, Lee CT, Cheng PT, Blaabjerg F (2011) A reactive current injection technique for renewable energy converters in low voltage ride-through operations. In: IEEE-PES general meeting, pp 1–7Google Scholar
  27. 27.
    Lee CT, Hsu CW, Cheng PT (2011) A low-voltage ride through technique for grid-connected converters of distributed energy resources. IEEE Trans Ind Appl 4(47):1821–1832CrossRefGoogle Scholar
  28. 28.
    Mogos EF (2004) Production dans les réseaux de distribution, étude pluridisciplinaire de la modélisation pour le contrôle des sources. PHD Thesis, ENSAM, LilleGoogle Scholar
  29. 29.
    Hamrouni N (2009) Modélisation et commande des systèmes photovoltaïques connectés au réseau électrique basse tension. PHD Thesis, ENIT, TunisieGoogle Scholar
  30. 30.
    Mahmoud AMA, Mashaly HM, Kandil SA, El Khaseb H, Nashed MNF (2000) Fuzzy logic implementation for photovoltaic maximum power tracking. In: IEEE international workshop on robot and human interactive communication, pp 155–60Google Scholar
  31. 31.
    Hamrouni N, Jraidi M, Chérif A (2008) New control strategy for 2-stage grid-connected photovoltaic system. Renew Energy 33:2212–2222CrossRefGoogle Scholar
  32. 32.
    Kobayashi H (2012) Fault ride through requirements and measures of distributed PV systems in Japan. In: IEEE-PES general meeting, pp 1–6Google Scholar
  33. 33.
    Akagi H, Nabae A (1986) Control strategy of active power filters using multiple voltage source PWM converters. IEEE Trans Indus Electr 22(3):460–465CrossRefGoogle Scholar
  34. 34.
    Pankow Y (2005) Etude de l’intégration de la production décentralisée dans un réseau basse tension, application au générateur photovoltaïque. PHD Thesis, ENSAM, FranceGoogle Scholar
  35. 35.
    Alali MAE (2002) Contribution à l’étude des compensateurs actifs des réseaux électriques basse tension. PHD Thesis, University Louis Pasteur, Strasbourg, FranceGoogle Scholar
  36. 36.
    Bojrup M (1999) Advanced control of active filters in a battery charger application. PHD Thesis, Lund Institute of TechnologyGoogle Scholar
  37. 37.
    Jamali S, Talavat V (2010) Dynamic fault location method for distribution networks with distributed generation. Electr Eng J 92:119–127CrossRefGoogle Scholar
  38. 38.
    Yang Y, Blaabjerg F, Huai W, Marcelo GS (2016) Power control flexibilities for grid-connected multi-functional photovoltaic inverters. IET Renew Power Gener 99:1–10Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Nejib Hamrouni
    • 1
    • 2
  • Moncef Jraidi
    • 1
  • Amel Ghobber
    • 1
  • Ahmed Dhouib
    • 1
  1. 1.Laboratory of Analysis and Treatment of Energetic and Electric Systems (ATEES)Science Faculty of Tunis-University of Tunis El ManarTunisTunisia
  2. 2.High Institute of Science and Technology of MateurUniversity of CarthageTunisTunisia

Personalised recommendations