Electrical Engineering

, Volume 100, Issue 2, pp 811–822 | Cite as

Induction heating of cylindrical loads of arbitrary skin-depth by “current-sheet” inductors

  • Jules Delacroix
  • Pascal Piluso
  • Nourdine Chikhi
  • Pascal Fouquart
Original Paper


In this paper, an original analytical method for determining the evolution of electromagnetic quantities in cylindrical inductor-load systems of arbitrary skin-depth is proposed. This fast and flexible approach aims at facilitating the dimensioning of induction heating facilities. The 1-D induction equation is first analytically solved in the load. The transformer theory is then applied, allowing to define the true boundary condition (BC) for the electromagnetic field. The latter issue is then enhanced as a means of highlighting the relevance of the present method when compared with other reference works. The predictions of the analytical approach are then benchmarked with purely numerical results. Finally, a typical application is highlighted, consisting in the optimization of the electrical efficiency of a given induction heating facility.


Electromagnetic fields Induction heating Transformer theory FEM simulations Electrical efficiency 



The authors would like to thank R. Ernst for many insightful discussions. This work has been performed in the frame of the ANR-Post Fukushima ICE - French Ministry for Higher Education and Research.


  1. 1.
    Lucia O, Maussion P, Dede EJ, Burdio JM (2014) Induction heating technology and its applications: past developments, current technology, and future challenges. IEEE Trans Ind Electron 61:2509–2520CrossRefGoogle Scholar
  2. 2.
    Journeau C, Piluso P, Haquet J-F, Boccaccio E, Saldo V, Bonnet J-M, Malaval S, Carénini L, Brissonneau L (2009) Two-dimensional interaction of oxidic corium with concretes: the VULCANO VB test series. Ann Nucl Energy 36:1597–1613CrossRefGoogle Scholar
  3. 3.
    Gresho PM, Derby JJ (1987) A finite element model for induction heating of a metal crucible. J Cryst Growth 85:40–48Google Scholar
  4. 4.
    Bioul F, Dupret F (2005) Application of asymptotic expansions to model two-dimensional induction heating systems. Part I: calculation of electromagnetic field distribution. IEEE Trans Magn 41:2496–2505CrossRefGoogle Scholar
  5. 5.
    Valchev VC, Todorova TP, Yudov DD, Mareva DJ (2016) Design considerations of inductors for induction heating of fluids. In: Proceedings of the 19th international symposium on electrical apparatus and technologies (SIELA), 29 May–1 June, Bourgas, pp. 1–3Google Scholar
  6. 6.
    Jankowski TA, Pawley NH, Gonzales LM, Ross CA, Jurney JD (2016) Approximate analytical solution for induction heating of solid cylinders. Appl Math Model 40:2770–2782MathSciNetCrossRefGoogle Scholar
  7. 7.
    Storm HF (1946) Induction heating of long cylindrical charges. Trans Am Inst Electr Eng 65:369–377CrossRefGoogle Scholar
  8. 8.
    Delage D, Ernst R (1983) Modélisation électrique d’un système de fusion par induction en creuset froid destiné à l’élaboration de matériaux de haute pureté (Electrical modelling of a cold crucible system for melting high-purity materials). Rev Gen Electr 4:266–272Google Scholar
  9. 9.
    Kennedy MW, Akhtar S, Bakken JA, Aune RE (2014) Empirical verification of a short-soil correction factor. IEEE Trans Ind Electron 61:2573–2583CrossRefGoogle Scholar
  10. 10.
    Moreau R (1990) Magnetohydrodynamics. Kluwer academic publishers, Dordrecht, ch. 1, 4, 5, pp. 1–31, 110–150, 179–189Google Scholar
  11. 11.
    Knight D (2016) An introduction to the art of solenoid inductance calculation with emphasis on radio-frequency applications. [Online]. Available:, version 0.20
  12. 12.
    Davies EJ (1990) Conduction and induction heating. Institution of Engineering and Technology, LondonCrossRefGoogle Scholar
  13. 13.
    Ernst R (1983) Aspect électrique des systèmes monophasés (Electrical aspect of single-phase systems). Technical report Grenoble Institute of TechnologyGoogle Scholar
  14. 14.
    Cold crucible tutorial (2012) Comsol tutorials. Comsol support team and R. Ernst, Technical reportGoogle Scholar
  15. 15.
    MUMPS Support (2011) MUltifrontal massively parallel solver (MUMPS 4.10.0) user’s guideGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratoire de Physique et de Modélisation des Accidents graves (LPMA)Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre de CadaracheSaint-Paul-lès-DuranceFrance

Personalised recommendations