Skip to main content

Advertisement

Log in

Implementation and experimental investigation of a sensorless field-oriented control scheme for permanent-magnet synchronous generators

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Variable-speed wind energy conversion systems based on permanent-magnet synchronous generators (PMSGs) are typically controlled using the field-oriented control (FOC) principles. Therefore, accurate information of the rotor speed and position are essential to perform the required reference frame transformations. These signals can be obtained by mechanical sensors (e.g., position encoders or speed transducers) or via estimation schemes. This paper proposes a sensorless FOC strategy for direct-driven PMSGs in variable-speed wind turbines. A synchronously rotating reference frame phase-locked loop (PLL) that utilizes a model-based back elector-motive force (back-EMF) estimation is employed to estimate the rotor speed and position of the PMSG. The proposed sensorless FOC strategy is experimentally implemented, and its performance is investigated for all operation conditions and under parameter variations of the PMSG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liserre M, Cardenas R, Molinas M, Rodriguez J (2011) Overview of multi-MW wind turbines and wind parks. IEEE Trans. Ind Electron 58(4):1081–1095

    Article  Google Scholar 

  2. Jeong HG, Lee KB (2014) A control scheme to fulfill the grid-code under various fault conditions in the grid-connected wind turbines. Electr Eng J 96(2):199–210

    Article  Google Scholar 

  3. Abdelrahem M, Kennel R (2016) Fault-ride through strategy for permanent-magnet synchronous generators in variable-speed wind turbines. Energies 9(12):1–15

    Article  Google Scholar 

  4. Abdel-Salam M, Ahmed A, Abdel-Sater M (2011) Harmonic mitigation, maximum power point tracking and dynamic performance of variable speed grid connected wind turbine. J Electr Power Compon Syst 39(2):176–190

    Article  Google Scholar 

  5. Zhang Z, Hackl C, Abdelrahem M, Kennel R (2016) Voltage sensorless direct model predictive control of 3L-NPC back-to-back power converter PMSG wind turbine systems with fast dynamics. In: Proceedings of power and energy student summit (PESS 2016)

  6. Zhao Y, Wei C, Zhang Z, Qiao W (2013) A review on position/speed sensorless control for permanent-magnet synchronous machine-based wind energy conversion systems. IEEE J Emerg Sel Topics Power Electron 1(4):203–216

    Article  Google Scholar 

  7. Benadja M, Chandra A (2015) Adaptive sensorless control of PMSGs-based offshore wind farm and VSC-HVdc stations. IEEE J Emerg Sel Topics Power Electron 3(4):918–931

    Article  Google Scholar 

  8. Abdelrahem M, Hackl C, Kennel R (2017) Simplified model predictive current control without mechanical sensors for variable-speed wind energy conversion systems. Electr Eng J 99(1):367–377

    Article  Google Scholar 

  9. Abdelrahem M, Hackl C, Zhang Z, Kennel R (2016) Sensorless control of permanent magnet synchronous generators in variable-speed wind turbine systems. In: Proceedings of power and energy student summit (PESS 2016), Aachen, Germany, 19–20 January 2016

  10. Rigatos G, Siano P, Zervos N (2014) Sensorless control of distributed power generators with the derivative-free nonlinear Kalman filter. IEEE Trans Ind Electron 61(11):6369–6382

    Article  Google Scholar 

  11. Yan J, Lin H, Feng Y, Guo X, Huang Y, Zhu ZQ (2013) Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system. IET Renew Power Gener 7(1):28–35

    Article  Google Scholar 

  12. Abdelrahem M, Hackl C, Kennel R (2016) Model predictive control of permanent magnet synchronous generators in variable-speed wind turbine systems. In: Proceedings of power and energy student summit (PESS 2016), Aachen, Germany, 19–20 January 2016

  13. Liu W, Chen L, Ou J, Cheng S (2011) Simulation of PMSG wind turbine system with sensor-less control technology based on model reference adaptive system. In: International conference on electrical machines and systems, Beijing, 2011, pp. 1–3

  14. Zhang Z, Zhao Y, Qiao W, Qu L (2014) A space-vector-modulated sensorless direct-torque control for direct-drive PMSG wind turbines. IEEE Trans Ind Appl 50(4):2331–2341 July-Aug. 2014

    Article  Google Scholar 

  15. Koch G, Gabbi T, Henz G, Vieira RP, Pinheiro H (2015) Sensorless technique applied to PMSG of WECS using sliding mode observer. In: IEEE 13th Brazilian power electronics conference and 1st southern power electronics conference (COBEP/SPEC), Fortaleza, 2015, pp. 1–6

  16. Huang K, Zheng L, Huang S, Xiao L, Li W (2011) Sensorless control for direct-drive PMSG wind turbines based on sliding mode observer. In: International conference on electrical machines and systems, Beijing, pp. 1–5

  17. Hui Li, Shi KL, McLaren PG (2005) Neural-network-based sensorless maximum wind energy capture with compensated power coefficient. IEEE Trans Ind Appl 41(6):1548–1556

    Article  Google Scholar 

  18. Singh M, Chandra A (2011) Application of adaptive network-based fuzzy inference system for sensorless control of PMSG-based wind turbine with nonlinear-load-compensation capabilities. IEEE Trans Power Electron 26(1):165–175

    Article  Google Scholar 

  19. Golestan S, Guerrero JM, Vasquez JC (2017) Three-phase PLLs: a review of recent advances. IEEE Trans Power Electron 32(3):1894–1907

    Article  Google Scholar 

  20. Comanescu M, Xu L (2006) An improved flux observer based on PLL frequency estimator for sensorless vector control of induction motors. IEEE Trans Ind Electron 53(1):50–56

    Article  Google Scholar 

  21. Preindl M, Schaltz E (2011) Sensorless model predictive direct current control using novel second-order PLL observer for PMSM drive systems. IEEE Trans Ind Electron 58(9):4087–4095

    Article  Google Scholar 

  22. Tong L et al (2014) An SRF-PLL-based sensorless vector control using the predictive deadbeat algorithm for the direct-driven permanent magnet synchronous generator. IEEE Trans Power Electron 29(6):2837–2849

    Article  Google Scholar 

  23. Fan S, Wang P, Wen C (2010) A new sensorless control strategy used in direct-drive PMSG wind power system. In: 2nd international symposium on power electronics for distributed generation systems. China, Hefei, pp 611–615

  24. Dirscherl C, Hackl C, Schechner K (2015) Modellierung und Regelung von modernen Windkraftanlagen: Eine Einführung” (Chapter 24). In: Schröder D (ed) Elektrische Antriebe - Regelung von Antriebssystemen. Springer, New York, pp 1540–1614

    Chapter  Google Scholar 

  25. Hackl C, Kamper M, Kullick J, Mitchel J (2016) Current control of reluctance synchronous machines with online adjustment of the controller parameters. In: Proceedings of the 2016 IEEE international symposium on industrial electronics (ISIE 2016), Santa Clara, USA, p. 153–160,

  26. Shi T, Wang Z, Xia C (2015) Speed measurement error suppression for PMSM control system using self-adaption Kalman observer. IEEE Trans Ind Electron 62(5):2753–2763

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abdelrahem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrahem, M., Hackl, C.M. & Kennel, R. Implementation and experimental investigation of a sensorless field-oriented control scheme for permanent-magnet synchronous generators. Electr Eng 100, 849–856 (2018). https://doi.org/10.1007/s00202-017-0554-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-017-0554-y

Keywords

Navigation