Advertisement

Electrical Engineering

, Volume 100, Issue 2, pp 857–863 | Cite as

A control method for operation of a power conditioner system based on fuel cell/supercapacitor

  • Juan C. Trujillo Caballero
  • Jaime Arau Roffiel
  • Miguel A. López Mariño
  • Oscar R. Morgado Lievana
  • Edris Pouresmaeil
  • Ionel Vechiu
Original Paper
  • 140 Downloads

Abstract

This paper proposes a digital control scheme to control operation of a proton exchange membrane fuel cell module of 1.2 kW and a supercapacitor through a DC/DC hybrid converter. A FC is proposed as a primary source of energy along with a SC as an auxiliary source of energy. A control scheme is proposed for control of the proposed system. An experimental setup of the proposed system is implemented in the laboratory, and several scenarios have been defined for tests to verify that the proposed system achieves an excellent output voltage regulation and SC voltage control, under disturbances from FC voltage, load voltage and other perturbations described in results analysis.

Keywords

DC/DC converters Bidirectional converter Hybrid system Supercapacitor, Fuel cells and PI controllers 

References

  1. 1.
    Mori D, Hirose K (2009) Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrogen Energy 34:4569–4574Google Scholar
  2. 2.
    Funsho Akorede M, Hizam H, Pouresmaeil E (2010) Distributed energy resources and benefits to the environment. Renew Sustain Energy Rev 14(2):724–734CrossRefGoogle Scholar
  3. 3.
    Palma L,Enjeti P (2008) A cost effective power converter to improve co tolerance in PEM fuel cell power systems. In: Proceedings of the IEEE power electronics specialists conference PESC, 2008, pp 210–215Google Scholar
  4. 4.
    Pouresmaeil E, Montesinos-Miracle D, Gomis-Bellmunt O (2011) Interfacing renewable energy resources to the utility grid using a cascaded multilevel inverter. In: Proceedings of the 14th IEEE proceedings of the european conference on power electronics and applications (EPE), pp 1–9Google Scholar
  5. 5.
    Liu V.-T, Hong J.-W, Tseng K.-C (2010) Power converter design for a fuel cell electric vehicle. In: Proceedings of the 5th IEEE conference industrial electronics and applications (ICIEA), pp 510–515Google Scholar
  6. 6.
    Hwanga JJ, Chang WR, Weng FB et al (2008) Development of a small vehicular PEM fuel cell system. Int J Hydrogen Energy 33:3801–3807CrossRefGoogle Scholar
  7. 7.
    Thounthong P, Chunkag V, Sethakul P, Davat B, Hinaje M (2009) Comparative study of fuel-cell vehicle hybridization with battery or supercapacitor storage device. IEEE Trans Veh Technol 58(8):3892–3904CrossRefGoogle Scholar
  8. 8.
    Thounthong P, Davat B, Rael S, Sethakul P (2009) Fuel starvation. IEEE Ind Appl Mag 15(4):52–59CrossRefGoogle Scholar
  9. 9.
    Kovacevic ATG, Bojoi R (2008) Advanced dc dc converter for power conditioning in hydrogen fuel cell systems. Int J Hydrogen Energy 33:3215–3219CrossRefGoogle Scholar
  10. 10.
    Samosir AS, Yatim A (2008) Dynamic evolution control of bidirectional dc-dc converter for interfacing ultracapacitor energy storage to fuel cell electric vehicle system. In: Proceedings of the australasian universities power engineering Conference AUPEC ’08, pp 1–6Google Scholar
  11. 11.
    Thounthong P, Rael S, Davat B (2009) Analysis of supercapacitor as second source based on fuel cell power generation. IEEE Trans Energy Convers 24(1):247–255CrossRefGoogle Scholar
  12. 12.
    Azib T, Bethoux O, Remy G, Marchand C, Berthelot E (2010) An innovative control strategy of a single converter for hybrid fuel cell/supercapacitor power source. IEEE Trans Ind Electron 57(12):4024–4031CrossRefGoogle Scholar
  13. 13.
    Trujillo Caballero JC, Gomis-Bellmunt O, Montesinos-Miracle D, Posada Gomez R, Martnez Sibaja A, Pouresmaeil E (2014) Digital control of a power conditioner for fuel cell/supercapacitor hybrid system. Electr Power Compon Syst 42(2):165–172CrossRefGoogle Scholar
  14. 14.
    Sánchez–Squella O (2010) Dynamic energy router. IEEE Control Syst 30:72–80CrossRefGoogle Scholar
  15. 15.
    Thounthong P, Sikkabut S, Sethakul P, Davat B (2010) Control algorithm of renewable energy power plant supplied by fuel cell/solar cell/supercapacitor power source. In: Proceedings of the international power electronics conference (IPEC), pp 1155–1162Google Scholar
  16. 16.
    Cervantes I, Perez-Pinal FJ, Leyva-Ramos J, Mendoza-Torres A, Hybrid control technique applied in a fc-sc electric vehicle platform. In: Proceedings of the IEEE vehicle power and propulsion conference (VPPC), 2010, pp 1–5Google Scholar
  17. 17.
    Samson GT, Undeland TM, Ulleberg b, Vie PJS (2009) Optimal load sharing strategy in a hybrid power system based on pv/fuel cell/ battery/supercapacitor. In: Proceedings of the international conference on clean electrical power, 2009, pp 141–146Google Scholar
  18. 18.
    Uzunoglu M, Alam MS (2008) Modeling and analysis of an fc/uc hybrid vehicular power system using a novel-wavelet-based load sharing algorithm. IEEE Trans Energy Convers 23(1):263–272CrossRefGoogle Scholar
  19. 19.
    Ali EA. Mohamed, Abudhahir A (2011) A survey of the relevance of control systems for pem fuel cells. In: Proceedings of International conference on computer, communication and electrical technology (ICCCET), 2011, pp 322–326Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Juan C. Trujillo Caballero
    • 1
  • Jaime Arau Roffiel
    • 2
  • Miguel A. López Mariño
    • 3
  • Oscar R. Morgado Lievana
    • 4
  • Edris Pouresmaeil
    • 5
  • Ionel Vechiu
    • 5
  1. 1.Departamento de Ingeniería EléctricaInstituto Tecnólogico de Orizaba (ITO)OrizabaMexico
  2. 2.Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)CuernavacaMexico
  3. 3.División de estudios de Posgrado e InvestigaciónInstituto Tecnológico de Orizaba (ITO)OrizabaMexico
  4. 4.Escuela de Ingeniería y cienciasTecnológico de MonterreyCórdobaMexico
  5. 5.ESTIA Institute of Technology, ESTIABidartFrance

Personalised recommendations