Electrical Engineering

, Volume 100, Issue 2, pp 741–747 | Cite as

Optimum power supply for minimum energy in nano-CMOS circuits

Original Paper
  • 41 Downloads

Abstract

Operating complementary metal oxide semiconductor (CMOS) circuits in subthreshold mode of operation is proved to be energy efficient for many applications ranging from biomedical implantable devices to wireless sensors which require ultra-low power consumption. In particular, operating CMOS circuits in subthreshold mode minimizes the energy per operation which has been widely considered as the metric for measuring the power efficiency of the circuit. In this paper, the value of the supply voltage that minimizes the energy per operation in CMOS circuits is determined analytically considering the activity factor, the logic depth and the technology parameters. In addition, another analytical closed-form model is developed to predict the least value of the supply voltage for CMOS circuit to function properly. The developed models target the nano-regime CMOS technology. The simplicity of these models provides a good insight into the factors that affect the subthreshold operation. Despite their simplicity, the produced models show a very good agreement with the simulation results considering 16-nm PTM HP process parameters and different CMOS circuits.

Keywords

CMOS Subthreshold voltage Energy minimization Power supply optimization 

References

  1. 1.
    Wang A, Chandrakasan A (2004) A 180 mV FFT processor using subthreshold circuit techniques. In: IEEE international conference, solid-state circuitsGoogle Scholar
  2. 2.
    Wang A, Chandrakasan A (2005) A 180-mV subthreshold FFT processor using a minimum energy design methodology. IEEE J Solid-State Circuits 40(1):310–319. doi: 10.1109/JSSC.2004.837945 CrossRefGoogle Scholar
  3. 3.
    Hanson S, Zhai B, Bernstein K, Blaauw D, Bryant A, Chang L, Das KK, Haensch W, Nowak EJ, Sylvester DM (2006) Ultralow-voltage, minimum-energy CMOS. IBM J Res Dev 50(4.5):469–490. doi: 10.1147/rd.504.0469
  4. 4.
    Jin W, Lu S, He W, Mao Z (2011) A 230 mV 8-bit sub-threshold microprocessor for wireless sensor network. In: IEEE international conference on VLSI and system-on-chipGoogle Scholar
  5. 5.
    Mercier PP, Daly DC, Bhardwaj M, Wentzloff DD, Lee FS, Chandrakasan AP (2008) Ultra-low-power UWB for sensor network applications. In: Proceedings of IEEE international symposium on circuits systemGoogle Scholar
  6. 6.
    Moradi F et al (2008) 1-bit sub threshold full adders in 65 nm CMOS technology. In: Proceedings of the 20th international conference on microelectronicsGoogle Scholar
  7. 7.
    Reynders N, Dehaene W (2015) On the effect of technology scaling on variation-resilient sub-threshold circuits. Solid-State Electron 103:19–29CrossRefGoogle Scholar
  8. 8.
    Singh S, Sharma T, Sharma KG, Singh BP (2012) 9T full adder design in subthreshold region. VLSI Des 2012:248347. doi: 10.1155/2012/248347 CrossRefGoogle Scholar
  9. 9.
    Banerjee A, Calhoun BH (2014) An ultra-low energy subthreshold SRAM bitcell for energy constrained biomedical applications. J Low Power Electron Appl 4(2):119–137. doi: 10.3390/jlpea4020119 CrossRefGoogle Scholar
  10. 10.
    Hwang ME (2011) Supply-voltage scaling close to the fundamental limit under process variations in nanometer technologies. IEEE Trans Electron Dev 58(8):2808–2813. doi: 10.1109/TED.2011.2151257 CrossRefGoogle Scholar
  11. 11.
    Zhai B, Blaauw D, Sylvester D, Flautner K (2004) Theoretical and practical limits of dynamic voltage scaling. In: Proceedings of IEEE design automation conferenceGoogle Scholar
  12. 12.
    Calhoun BH, Chandrakasan A (2004) Characterizing and modeling minimum energy operation for subthreshold circuits. In: Proceedings of IEEE international symposium on low power electronics and designGoogle Scholar
  13. 13.
    Predictive Technology Model, 16 nm PTM-MG. http://ptm.asu.edu/
  14. 14.
    Luo H, Han Y, Cheung RCC, Liang G, Zhu D (2012) Subthreshold CMOS voltage reference circuit with body bias compensation for process variation. IET Circuits Devices Syst 6(3):198–203. doi: 10.1049/iet-cds.2011.0170
  15. 15.
    Sharma V, Kumar S (2011) Design of low-power CMOS cell structures using subthreshold conduction region. Int J Sci Eng Res 2(2)Google Scholar
  16. 16.
    Rabaey JM, Chandrakasan A, Nikolic B (2002) Digital integrated circuits–a design perspective. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  17. 17.
    Dennard RH, Gaensslen FH, Yu HN, Rideout VL, Bassous E, LeBlanc AR (1974) IEEE J Solid-State Circuits SC-9Google Scholar
  18. 18.
    Meindl JD, Davis JA (2000) The fundamental limit on binary switching energy for terascale integration (TSI). IEEE J Solid-State Circuits 35(10):1515–1516. doi: 10.1109/4.871332 CrossRefGoogle Scholar
  19. 19.
    Hanson S, Seok M, Sylvester D, Blaauw D (2008) Nanometer device scaling in subthreshold logic and SRAM. IEEE Trans Electron Devices 55(1):175–185CrossRefGoogle Scholar
  20. 20.
    Bryant A, Brown J, Cottrell P, Ketchen M, Ellis-Monaghan J, Nowak E (2001) Low-power CMOS at Vdd = 4kT/q. In: Device research conferenceGoogle Scholar
  21. 21.
    Yasufuku T, Niyama T, Piao Z, Ishida K, Murakata M, Takamiya M, Sakurai T (2010) Difficulty of power supply voltage scaling in large scale sunthreshold logic circuits. IEICE Trans Electron E93-C(3):332–339. doi: 10.1587/transele.E93.C.332

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Electronics and Communication EngineeringA’Sharqiyah UniversityIbraOman

Personalised recommendations