Electrical Engineering

, Volume 100, Issue 2, pp 667–676 | Cite as

A new strategy for battery and supercapacitor energy management for an urban electric vehicle

  • Idris Azizi
  • Hammoud Radjeai
Original Paper


A new strategy of energy management between battery and supercapacitors for an urban electric vehicle is suggested in this paper. These two sources are connected in parallel to the DC bus through two bidirectional DC–DC converters enabling separate control over the power flow of each source. Vehicle dynamics with load torque applied on the shaft motor is to be considered. This strategy of energy management permits dividing energy between the two sources depending on the state of charge of each source as well as on the vehicle displacement state such as stopping, acceleration, cruising down and uphill, and deceleration. The aim of the proposed strategy is the best use of energy through maximizing the use of SCs by transferring energy from batteries to SCs during the standstill phase or when the load applied to the vehicle is small; supercapacitors will then be ready in critical situations such as rapid acceleration or in high hills climbing. In order to validate the control design and evaluate our energy management strategy performance, a simulation of an urban hybrid electric vehicle movement with the Matlab/Simulink software is implemented.


Energy management Battery Supercapacitor Bidirectional converter Field orientation control Vehicle dynamics 


  1. 1.
    Nouh A (2008) Contribution au développement d’un simulateur pour les véhicules électriques routiers. Dissertation, the University of Technology of Belfort-MontbéliardGoogle Scholar
  2. 2.
    Trovão JP, Pereirinha PG, Jorge HM (2009) Simulation model and road tests comparative results of a small urban electric vehicle. In: 35th annual conference on IEEE industrial electronics, Porto, pp 836–841. doi: 10.1109/IECON.2009.5415028
  3. 3.
    Alireza K, Zhihao L (2010) Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art. IEEE Trans Veh Technol 59:2806–2814. doi: 10.1109/TVT.2010.2047877 CrossRefGoogle Scholar
  4. 4.
    Trovão JP, Pereirinha PG, Jorge HM, Antunes CH (2013) A multi-level energy management system for multi-source electric vehicles—An integrated rule-based meta-heuristic approach. Appl Energy 105:304–318. doi: 10.1016/j.apenergy.2012.12.081 CrossRefGoogle Scholar
  5. 5.
    Long B, Lim ST, Bai ZF, Ryu JH, Chong KT (2014) Energy management and control of electric vehicles using hybrid power source in regenerative braking operation. Energies 7:4300–4315. doi: 10.3390/en7074300 CrossRefGoogle Scholar
  6. 6.
    Ben Salah I, Bayoudhi B, Diallo D (2014) EV energy management strategy based on a single converter fed by a hybrid battery/supercapacitor power source. In: First international conference on green energy ICGE, Sfax: IEEE, pp 246–250. doi: 10.1109/ICGE.2014.6835429
  7. 7.
    Trovão JP, Santos VDN, Pereirinha PG, Jorge HM (2013) A simulated annealing Approach for optimal power source management in a small EV. IEEE Trans Sustain Energy 4:867–876. doi: 10.1109/TSTE.2013.2253139 CrossRefGoogle Scholar
  8. 8.
    Lahyani A, Venet P, Guermazi A, Troudi A (2013) Battery/supercapacitors combination in interruptible power supply. IEEE Trans Power Electron 28:1509–1522. doi: 10.1109/TPEL.2012.2210736 CrossRefGoogle Scholar
  9. 9.
    Armenta J, Núñez C, Visairo N, Lázaro I (2015) An advanced energy management system for controlling the ultracapacitor discharge and improving the electric vehicle range. J Power Sour 284:452–458. doi: 10.1016/j.jpowsour.2015.03.056 CrossRefGoogle Scholar
  10. 10.
    Yoong MK, Gan YH, Gan GD, Leong CK (2010) Studies of regenerative braking in electric vehicle . In: Sustainable utilization and development in engineering and technology. IEEE, Petaling Jaya. pp 40–45. doi: 10.1109/STUDENT.2010.5686984
  11. 11.
    Sun H, Pei X, Xu L, Wang H, Sheng Y, Yu Y(2012) Application of battery ultracapacitor hybrid system in the hybrid electric vehicles. In: Proceedings of the FISITA 2012 world automotive congress, Springer, Berlin, pp 785–793. doi: 10.1007/978-3-642-33741-3_7
  12. 12.
    Zhou HB, Long B, Coa BG (2013) New energy recovery \(\text{ H }\infty \) robust controller for electric bicycles. Int J Automot Technnol 14:283–289. doi: 10.1007/s12239-013-0032-0 CrossRefGoogle Scholar
  13. 13.
    Victor M (2007) Conception Optimale Systémique des Composants des Chaines de Traction Electrique. Dissertation, Ecole Centrale de LilleGoogle Scholar
  14. 14.
    Tremblay O, Dessaint LA (2009) Experimental validation of a battery dynamic model for EV applications. World Electr Veh J 3:289–298Google Scholar
  15. 15.
    Shuhui L, Ke B, Xingang F, Huiying Z (2014) Energy management and control of electric vehicle charging stations. Electr Power Compon Syst 42(3–4):339–347. doi: 10.1080/15325008.2013.837120 Google Scholar
  16. 16.
    Perdigao MS, Trovao JP, Alonso JM, Pereirinha PG, Saraiva ES(2013) Experimental large-signal characterization of power inductors in bidirectional electric vehicle DC–DC converters for simulation analysis. In: Power electronics and applications conference. IEEE, Lille. pp 1–10. doi: 10.1109/EPE.2013.6634438
  17. 17.
    Silva MA, Trovão JP, Pereirinha PG (2011) Implementation of a multiple input DC–DC converter for electric vehicle power system. In: Proceedings of 3rd international youth conference energetics (IYCE). IEEE, Leiria, pp 1–8Google Scholar
  18. 18.
    Baussière R, Labrique F, Seguier G (1997) les convertisseurs de l’électronique de puissance. Tec & Doc Lavoisier, FranceGoogle Scholar
  19. 19.
    Trovão JP, Santos VDN, Antunes CH, Pereirinha PG (2015) A real-time energy management architecture for multi-source electric vehicles. IEEE Trans Ind Electron 62:3223–3233. doi: 10.1109/TIE.2014.2376883 CrossRefGoogle Scholar
  20. 20.
    Paire D, Simoes M G, Lagorse J, Miraoui A (2010) A real-time sharing reference voltage for hybrid generation power system. In: Industry applications society annual meeting (IAS). IEEE, Houston. pp 1–8. doi: 10.1109/IAS.2010.5615382
  21. 21.
    Victor P (2013) Electrothechnical systems simulation with simulink and simpowersystems. CRC Press, Boca RatonGoogle Scholar
  22. 22.
    Yusivar F, Hidayat N, Gunawan R, Halim A (2014) Implementation of field oriented control for permanent magnet synchronous motor. In: IEEE international conference on electrical engineering and computer science. Kuta, pp 359–362, doi: 10.1109/ICEECS.2014.7045278
  23. 23.
    Azizi I, Radjeai H (2015) A bidirectional DC-DC converter fed DC motor for electric vehicle application. In: 4th international conference on electrical engineering (ICEE). IEEE, Boumerdes. pp 1–5. doi: 10.1109/INTEE.2015.7416683
  24. 24.
    James L, John L (2003) Electr Veh Technol Explain. Wiley, HobokenGoogle Scholar
  25. 25.
    Choudar A, Boukhetala D, Barkat S, Brucker J (2014) A local energy management of a hybrid PV-storage based distributed generation for microgrids. Energ Convers Manag 90:21–33. doi: 10.1016/j.enconman.2014.10.067 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Automatic Laboratory (LAS), Faculty of TechnologySetif -1- UniversitySetifAlgeria

Personalised recommendations