Advertisement

Electrical Engineering

, Volume 100, Issue 2, pp 375–387 | Cite as

Modeling and simulation of a MMC-based solid-state transformer

  • M. Ebrahim Adabi
  • Juan A. Martinez-Velasco
  • Salvador Alepuz
Original Paper

Abstract

This paper presents a model of a bidirectional MV/LV solid-state transformer (SST) for distribution system studies. A modular multilevel converter configuration is used in the MV side of the STT. The LV side uses a three-phase four-wire configuration that can be connected to both load and generation. The model developed for this work has been implemented in MATLAB/Simulink, and its behavior has been tested by carrying out several case studies under different operating conditions. The simulation results support the feasibility of the SST and its advantages in comparison to the conventional transformer. The paper also includes a discussion of the main model limitations and the future work.

Keywords

Bidirectional converter Distribution system Modular multilevel converter Power quality Solid-state transformer 

References

  1. 1.
    Bifaretti S, Zanchetta P, Watson A, Tarisciotti L, Clare JC (2011) Advanced power electronic conversion and control system for universal and flexible power management. IEEE Trans Smart Grid 2(2):231–243CrossRefGoogle Scholar
  2. 2.
    Wang J, Huang AQ, Sung W, Liu Y, Baliga BJ (2009) Smart grid technologies. IEEE Ind Electron Mag 3:16–23CrossRefGoogle Scholar
  3. 3.
    Lai JS (2009) Power conditioning circuit topologies. IEEE Ind Electron Mag 3:24–34CrossRefGoogle Scholar
  4. 4.
    Shiri A (2013) A solid state transformer for interconnection between the medium and the low voltage grid design. Dissertation, Delft University of TechnologyGoogle Scholar
  5. 5.
    She X, Burgos R, Wang G, Wang F, Huang AQ (2012) Review of solid state transformer in the distribution system: from components to field application. In: IEEE energy conversion congress and exposition (ECCE)Google Scholar
  6. 6.
    Maitra A et al (2009) Intelligent universal transformer design and applications. In: 20th international conference and exhibition on electricity distribution (CIRED)Google Scholar
  7. 7.
    Heinemann L, Mauthe G (2001) The universal power electronics based distribution transformer, a unified approach. In: IEEE 32nd annual power electronics specialists conference, vol 2, pp 504–509Google Scholar
  8. 8.
    Falcones Zambrano SD (2011) A DC–DC multiport converter based solid state transformer integrating distributed generation and storage. PhD Thesis, Arizona State UniversityGoogle Scholar
  9. 9.
    Std IEC, 60038 (2009) IEC standard voltages. Edition 7Google Scholar
  10. 10.
    Abu-Rub H, Holtz J, Rodriguez J, Baoming G (2010) Medium-voltage multilevel converters—state of the art, challenges, and requirements in industrial applications. IEEE Trans Ind Electron 57(8):2581–2596CrossRefGoogle Scholar
  11. 11.
    Kouro S, Malinowski M, Gopakumar K, Pou J, Franquelo LG, Wu B, Rodriguez J, Pérez MA, Leon JI (2010) Recent advances and industrial applications of multilevel converters. IEEE Trans Ind Electron 57(8):2553–2580CrossRefGoogle Scholar
  12. 12.
    Rodríguez J, Bernet S, Wu B, Pontt JO, Kouro S (2007) Multilevel voltage-source-converter topologies for industrial medium-voltage drives. IEEE Trans Ind Electron 54(6):2930–2945CrossRefGoogle Scholar
  13. 13.
    Sabahi M, Yazdanpanah Goharrizi A, Hosseini SH, Bana Sharifian MB, Gharehpetian GB (2010) Flexible power electronic transformer. IEEE Trans Power Electron 25(8):2159–2169CrossRefGoogle Scholar
  14. 14.
    González F, Martin-Arnedo J, Alepuz S, Martinez-Velasco JA (2015) EMTP model of a bidirectional multilevel solid state transformer for distribution system studies. In: IEEE PES general meetingGoogle Scholar
  15. 15.
    Wang L, Zhang D, Wang Y, Wu B, Athab HS (2016) Power and voltage balance control of a novel three-phase solid state transformer using multilevel cascaded H-bridge inverters for microgrid applications. IEEE Trans Power Electron 31(4):3289–3301CrossRefGoogle Scholar
  16. 16.
    She X, Yu X, Wang F, Huang AQ (2014) Design and demonstration of a 3.6-kV–120-V/10-kVA solid-state transformer for smart grid application. IEEE Trans Power Electron 29(8):3982–3996CrossRefGoogle Scholar
  17. 17.
    Zheng Z, Gao Z, Gu C, Xu L, Wang K, Li Y (2014) Stability and voltage balance control of a modular converter with multi-winding high-frequency transformer. IEEE Trans Power Electron 29(8):4183–4194CrossRefGoogle Scholar
  18. 18.
    Kumar Sahoo A, Mohan N (2014) High frequency link multi-winding power electronic transformer using modular multilevel converter for renewable energy integration. In: 40th annual conference of the IEEE industrial electronics society (IECON)Google Scholar
  19. 19.
    Wu D, Peng L (2016) Analysis and suppressing method for the output voltage harmonics of modular multilevel converter. IEEE Trans Power Electron 31(7):4755–4765Google Scholar
  20. 20.
    Wang M, Hu Y, Zhao W, Wang Y, Chen G (2016) Application of modular multilevel converter in medium voltage high power permanent magnet synchronous generator wind energy conversion systems. IET Renew Power Gener 10(6):824–833CrossRefGoogle Scholar
  21. 21.
    Mehrasa M, Pouresmaeil E, Zabihi S, Catalao JPS (2016) Dynamic model, control and stability analysis of MMC-HVDC transmission systems. IEEE Trans Power Del. doi: 10.1109/TPWRD.2016.2604295 Google Scholar
  22. 22.
    Yu F, Lin W, Wang X, Xie D (2015) Fast voltage-balancing control and fast numerical simulation model for the modular multilevel converter. IEEE Trans Power Del 30(1):220–228CrossRefGoogle Scholar
  23. 23.
    Saad H, Dennetiere S, Mahseredjian J, Delarue P, Guillaud X, Peralta J et al (2014) Modular multilevel converter models for electromagnetic transients. IEEE Trans Power Del 9(3):1481–1489CrossRefGoogle Scholar
  24. 24.
    Solas E, Abad G, Barrena JA, Aurtenetxea S, Cárcar A, Zajac L (2013) Modular multilevel converter with different submodule concepts—Part I: capacitor voltage balancing method. IEEE Trans Ind Electron 60(10):4525–4535CrossRefGoogle Scholar
  25. 25.
    Akagi H (2011) Classification, terminology, and application of the modular multilevel cascade converter (MMCC). IEEE Trans Power Electron 26(11):3119–3130CrossRefGoogle Scholar
  26. 26.
    Rohner S, Bernet S, Hiller M, Sommer R (2010) Modulation, losses, and semiconductor requirements of modular multilevel converters. IEEE Trans Ind Electron 57(8):2633–2642CrossRefGoogle Scholar
  27. 27.
    Kumar Sahoo A, Mohan N (2014) A power electronic transformer with sinusoidal voltages and currents using modular multilevel converter. In: International power electronics conference (IPEC-ECCE-Asia)Google Scholar
  28. 28.
    Shojaei A, Joos G (2013) A topology for three-stage solid state transformer. In: IEEE power and energy society general meetingGoogle Scholar
  29. 29.
    Debnath S, Qin J, Bahrani B, Saeedifard M, Barbosa P (2015) Operation, control, and applications of the modular multilevel converter: a review. IEEE Trans Power Electron 30(1):37–53CrossRefGoogle Scholar
  30. 30.
    Guan M, Chen H, Xu Z (2011) Control and modulation strategies for modular multilevel converter based HVDC system. In: 37th annual conference of the IEEE industrial electronics society (IECON)Google Scholar
  31. 31.
    Yazdani A, Iravani R (2006) A unified dynamic model and control for the voltage-sourced converter under unbalanced grid conditions. IEEE Trans Power Del 21(3):1620–1629CrossRefGoogle Scholar
  32. 32.
    Xu L, Andersen B, Cartwright P (2005) VSC transmission operating under unbalanced AC conditions—analysis and control design. IEEE Trans Power Del 20(1):427–434CrossRefGoogle Scholar
  33. 33.
    Hagiwara M, Akagi H (2009) Control and experiment of pulse width modulated modular multilevel converters. IEEE Trans Power Electron 24(7):1737–1746CrossRefGoogle Scholar
  34. 34.
    Konstantinou GS, Ciobotaru M, Agelidis VG (2011) Operation of a modular multilevel converter with selective harmonic elimination PWM. In: 8th international conference on power electronics and ECCEA Asia (ICPE and ECCEA)Google Scholar
  35. 35.
    Ängquist L, Antonopoulos A, Siemaszko D, Vasiladiotis M, Nee HP (2011) Open-loop control of modular multilevel converters using estimation of stored energy. IEEE Trans Ind Appl 47(6):2516–2524CrossRefGoogle Scholar
  36. 36.
    Saeedifard M, Iravani R (2010) Dynamic performance of a modular multilevel back-to-back HVDC System. IEEE Trans Power Electron 25(4):2903–2912CrossRefGoogle Scholar
  37. 37.
    Sahoo AK, Leon R, Mohan N (2013) Review of modular multilevel converters for teaching a graduate-level. Course of power electronics in power systems. University of Minnesota, Saint PaulCrossRefGoogle Scholar
  38. 38.
    Shojaei A, Joos G (2013) A modular solid state transformer with a single- phase medium-frequency transformer. In: IEEE electrical power and energy conference (EPEC)Google Scholar
  39. 39.
    Lezana P, Silva CA, Rodríguez J, Pérez MA (2007) Zero-steady-state-error input-current controller for regenerative multilevel converters based on single-phase cells. IEEE Trans Ind Electron 54(2):733–740CrossRefGoogle Scholar
  40. 40.
    Helin W, Qiming C, Ming L, Gen C, Liang D (2014) The study of single-phase PWM rectifier based on pr control strategy. In: 26th Chinese control and decision conference (CCDC)Google Scholar
  41. 41.
    Alepuz S, González F, Martin-Arnedo J, Martinez-Velasco JA (2013) Solid state transformer with low-voltage ride-through and current unbalance management capabilities. In: 39th annual conference of the IEEE industrial electronics societyGoogle Scholar
  42. 42.
    Martinez-Velasco JA, Alepuz S, González-Molina F, Martin-Arnedo J (2014) Dynamic average modeling of a bidirectional solid state transformer for feasibility studies and real-time implementation. Electr Power Syst Res 117:143–153CrossRefGoogle Scholar
  43. 43.
    Alepuz S, González-Molina F, Martin-Arnedo J, Martinez-Velasco JA (2014) Development and testing of a bidirectional distribution electronic power transformer model. Electr Power Syst Res 107:230–239CrossRefGoogle Scholar
  44. 44.
    Perales MA, Prats MM, Portillo R, Mora JL, Leon JI, Franquelo LG (2003) Three-dimensional space vector modulation in abc coordinates for four-leg voltage source converters. IEEE Power Electron Lett 99(4):104–109CrossRefGoogle Scholar
  45. 45.
    Zhang R, Prasad VH, Boroyevich D, Lee FC (2002) Three-dimensional space vector modulation for four-leg voltage-source converters. IEEE Trans Power Electron 17(3):314–326CrossRefGoogle Scholar
  46. 46.
    Vechiu I, Curea O, Camblong H (2010) Transient operation of a four-leg inverter for autonomous applications with unbalanced load. IEEE Trans Power Electron 25(2):399–407CrossRefGoogle Scholar
  47. 47.
    Ebrahimzadeh E, Farhangi S, Iman-Eini H, Blaabjerg F (2016) Modulation technique for four-leg voltage source inverter without a look-up table. IET Power Electron 9(4):648–656Google Scholar
  48. 48.
    Huber JE, Kolar JW (2014) Volume/weight/cost comparison of a 1 MVA 10 kV/400 V solid-state against a conventional low-frequency distribution transformer. In: IEEE energy conversion congress and exposition (ECCE)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • M. Ebrahim Adabi
    • 1
  • Juan A. Martinez-Velasco
    • 1
  • Salvador Alepuz
    • 2
  1. 1.Universitat Politecnica de CatalunyaBarcelonaSpain
  2. 2.Mataró School of TechnologyMataróSpain

Personalised recommendations