Skip to main content
Log in

On division polynomial PIT and supersingularity

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

For an elliptic curve E over a finite field \(\mathbb {F}_q\), where q is a prime power, we propose new algorithms for testing the supersingularity of E. Our algorithms are based on the polynomial identity testing problem for the p-th division polynomial of E. In particular, an efficient algorithm using points of high order on E is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The dual of an isogeny \(\phi : E_1 \rightarrow E_2\) of degree m is a unique isogeny \(\hat{\phi }: E_2 \rightarrow E_1\) such that \(\phi \circ \hat{\phi } = [m]\), see [16, III.6].

  2. See [20].

References

  1. Bröker, R.: Constructing supersingular elliptic curves. J. Comb. Number Theory 1(3), 269–273 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Chang, M.-C., Kerr, B., Shparlinski, I.E., Zannier, U.: Elements of large order on varieties over prime finite fields. J. Théor. Nombres Bordx. 26(3), 579–593 (2014)

    Article  MathSciNet  Google Scholar 

  3. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from expander graphs. J. Cryptol. 22(1), 93–113 (2009)

    Article  MathSciNet  Google Scholar 

  4. Finch, S.R.: Mathematical constants, vol. 93. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  5. Hooley, C.: On artins conjecture. J. Reine Angew. Math. 225(209–220), 248 (1967)

    MathSciNet  Google Scholar 

  6. Husemöller, D.: Elliptic Curves, Volume 111 of Graduate Texts in Mathematics. Springer, Berlin (1987)

    Google Scholar 

  7. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: International Workshop on Post-Quantum Cryptography. Springer, Berlin, pp. 19–34 (2011)

    Chapter  Google Scholar 

  8. Jao, D., Soukharev, V.: Isogeny-based quantum-resistant undeniable signatures. In: International Workshop on Post-Quantum Cryptography. Springer, Berlin, pp. 160–179 (2014)

    MATH  Google Scholar 

  9. Kohel, D.: Endomorphism Rings of Elliptic Curves Over Finite Fields. PhD thesis, University of California at Berkeley (1996)

  10. Matthews, K.R.: A generalisation of artin’s conjecture for primitive roots. Acta Arith. 29, 113–146 (1976)

    Article  MathSciNet  Google Scholar 

  11. Saxena, N.: Progress on polynomial identity testing. Bull. EATCS 99, 49–79 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod \(p\). Math. Comput. 44(170), 483–494 (1985)

    MathSciNet  MATH  Google Scholar 

  13. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM: JACM 27(4), 701–717 (1980)

    Article  MathSciNet  Google Scholar 

  14. Shoup, V.: Fast construction of irreducible polynomials over finite fields. J. Symb. Comput. 17(5), 371–391 (1994)

    Article  MathSciNet  Google Scholar 

  15. Shoup, V., et al.: NTL: A library for doing number theory (2016). http://shoup.net/ntl/

  16. Silverman, J.H.: The Arithmetic of Elliptic Curves, vol. 106. Springer, Berlin (2009)

    MATH  Google Scholar 

  17. Stein, W., et al.: Sage: open source mathematical software. 7 December 2009 (2016). http://www.sagemath.org/

  18. Sutherland, A.V.: Identifying supersingular elliptic curves. LMS J. Comput. Math. 15, 317–325 (2012)

    Article  MathSciNet  Google Scholar 

  19. The PARI Group, Bordeaux. PARI/GP, version 2.8.0 (2016)

  20. Voloch, J.F.: On the order of points on curves over finite fields. Integers Electron. J. Comb. Number Theory 7(A49), 1 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Voloch, J.F.: Elements of high order on finite fields from elliptic curves. Bull. Aust. Math. Soc. 81(03), 425–429 (2010)

    Article  MathSciNet  Google Scholar 

  22. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, New York (1999)

    MATH  Google Scholar 

  23. Washington, L.C.: Elliptic Curves: Number Theory and Cryptography. CRC Press, Boca Raton (2008)

    Book  Google Scholar 

  24. Zippel, R.: Probabilistic Algorithms for Sparse Polynomials. Springer, Berlin (1979)

    Book  Google Scholar 

Download references

Acknowledgements

The author would like to thank Felipe Voloch for his valuable feedback on Sect. 4, and Luca De Feo for helpful comments. This work was partially supported by NSERC, CryptoWorks21, and Public Works and Government Services Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Doliskani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doliskani, J. On division polynomial PIT and supersingularity. AAECC 29, 393–407 (2018). https://doi.org/10.1007/s00200-018-0349-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-018-0349-z

Keywords

Mathematics Subject Classification

Navigation