Skip to main content
Log in

A Pommaret bases approach to the degree of a polynomial ideal

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In this paper, we study first the relationship between Pommaret bases and Hilbert series. Given a finite Pommaret basis, we derive new explicit formulas for the Hilbert series and for the degree of the ideal generated by it which exhibit more clearly the influence of each generator. Then we establish a new dimension depending Bézout bound for the degree and use it to obtain a dimension depending bound for the ideal membership problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that the Krull dimension corresponds to the dimension as affine and not as projective variety, although we work exclusively with homogeneous ideals. We stick with the affine picture to facilitate comparison with other results which are also based on the dimension as affine variety.

  2. Please note that despite the similarity in notation \(\deg {(\mathcal {I})}\) and \(\deg {(\mathcal {I},\prec )}\) refer to very different objects!

  3. We follow here the conventions of [16]. In [38], a convention is used which corresponds to reverting the order of the variables \(x_{1},\ldots ,x_{n}\). This implies e.g. that the class is defined as the minimum and not the maximum. Thus care must be taken when transferring results of [38] to the conventions used in this article.

  4. In [38, 39] also complementary decompositions, i.e. direct sum decompositions of the complement of \(\mathrm{LT}(\mathcal {I})\) are discussed and it is shown that any Pommaret basis induces one. Then one can write down an explicit formula for \(\mathrm{HF}_{\mathcal {I}}\) with a similar structure as (2). However, this only transforms the problem into understanding the precise relationship between the complementary decomposition and the Pommaret basis. While this is relatively simple with regard to, say, \(\dim (\mathcal {I})\) and \({{\mathrm{depth}}}(\mathcal {I})\) (see the corresponding results in [38, 39]), the situation becomes non-trivial for \(\deg (\mathcal {I})\).

  5. Quasi stable ideals are also known by many other names like weakly stable ideals, ideals of nested type or ideals of Borel type.

  6. By generic position, we mean after a linear change of variables from a Zariski open set, see [1] for more details.

  7. Although we are dealing with a homogeneous ideal, we will always work with the dimension as affine variety.

  8. An ideal is called unmixed if all its associated prime ideals have the same dimension.

  9. This example has been provided by David Masser (private communication).

References

  1. Bayer, D., Stillman, M.: A criterion for detecting \(m\)-regularity. Invent. Math. 87(1), 1–11 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayer, D., Mumford, D.: What can be computed in algebraic geometry? In: D. Eisenbud., et al. (eds.) Computational algebraic geometry and commutative algebra. Proceedings of a conference held at Cortona, Italy, June 17–21, 1991, vol. 34, pp. 1–48. Cambridge University Press, Cambridge (1993)

  3. Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Commutative Algebra. Springer, New York (1993)

    Book  MATH  Google Scholar 

  4. Bermejo, I., Gimenez, Ph: Saturation and Catelnuovo–Mumford regularity. J. Algebra 303, 592–617 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brownawell, W.D.: Bounds for the degrees in the Nullstellensatz. Ann. Math. 126(3), 577–591 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brownawell, W.D., Masser, D.W.: Multiplicity estimates for analytic functions II. Duke Math. J. 47, 273–295 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  8. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universität Innsbruck (1965)

  9. Buchberger, B.: A criterion for detecting unnecessary reductions in the construction of Gröbner bases. In: Symbolic and Algebraic Computation (EUROSAM’79, International Symposium, Marseille). Lecture Notes in Computer Science. Springer, Berlin

  10. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Springer, New York (2007)

    Book  MATH  Google Scholar 

  11. Dickenstein, A., Fitchas, N., Giusti, M., Sessa, C.: The membership problem for unmixed polynomial ideals is solvable in single exponential time. Discrete Appl. Math. 33(1–3), 73–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Springer, New York (1995)

    MATH  Google Scholar 

  13. Eisenbud, D., Sturmfels, B.: Finding sparse systems of parameters. J. Pure Appl. Algebra 94(2), 143–157 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eliahou, S., Kervaire, M.: Minimal resolutions of some monomial ideals. J. Algebra 129, 1–25 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fröberg, R.: An Introduction to Gröbner Bases. Wiley, Chichester (1997)

    MATH  Google Scholar 

  16. Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput. Simul. 45(5–6), 519–541 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giusti, M.: Some effectivity problems in polynomial ideal theory. In: EUROSAM 84 (Cambridge, 1984), Volume 174 of Lecture Notes in Computer Science, pp. 159–171. Springer, Berlin (1984)

  18. Hartshorne, R.: Algebraic Geometry 8th Printing. Springer, Berlin (1997)

    Google Scholar 

  19. Heintz, J.: Definability and fast quantifier elimination in algebraically closed fields. Theor. Comput. Sci. 24, 239–277 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hermann, G.: Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann. 95(1), 736–788 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  21. Janet, M.: Les modules de formes algébriques et la théorie générale des systèmes différentielles. Ann. Sci. Éc. Norm. Supér. 41, 27–65 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  22. Janet, M.: Leçons sur les Systèmes d’Équations aux Dérivées Partielles. Fascicule IV, Cahiers Scientifiques. Gauthier-Villars, Paris (1924)

    Google Scholar 

  23. Jelonek, Z.: On the effective Nullstellensatz. Invent. Math. 162(1), 1–17 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kartzer, M.: Computing the dimension of a polynomial ideal and membership in low-dimensional ideals. Master thesis, Technische Universität München (2008)

  25. Kemper, G.: A Course in Commutative Algebra. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  26. Kollár, J.: Sharp effective Nullstellensatz. J. Am. Math. Soc. 1(4), 963–975 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lazard, D.: Résolution des systèmes d’équations algébriques. Theor. Comput. Sci. 15(1), 77–110 (1981)

    Article  MATH  Google Scholar 

  28. Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) Computer Algebra, EUROCAL ’83. Lecture Notes in Computer Science, vol. 162 pp. 146–156. Springer, Berlin (1983)

  29. Lejeune-Jalabert, M.: Effectivité de calculs polynomiaux. Cours de D.E.A, Institiute Fourier, Grenoble (1984)

    Google Scholar 

  30. Masser, D., Wüstholz, G.: Fields of large transcendence degree generated by values of elliptic functions. Invent. Math. 72, 407–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative semigroups and polynomial ideals. Adv. Math. 46(3), 305–329 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mayr, E.W., Ritscher, S.: Dimension-dependent bounds for Gröbner bases of polynomial ideals. J. Symb. Comput. 49, 78–94 (2013)

    Article  MATH  Google Scholar 

  33. Mora, T.: Solving Polynomial Equation Systems II: Macaulay’s Paradigm and Gröbner Technology. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  34. Rees, D.: A basis theorem for polynomial modules. Proc. Camb. Philos. Soc. 52, 12–16 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  35. Riquier, C.: Les Systèmes d’Équations aux Derivées Partielles. Gauthier-Villars, Paris (1910)

    MATH  Google Scholar 

  36. Ritscher, S.: Degree bounds and complexity of Gröbner bases of important classes of polynomial ideals. Ph.D. thesis, Technische Universität München (2012)

  37. Seiler, W.M.: A combinatorial approach to involution and \(\delta \)-regularity I: involutive bases in polynomial algebras of solvable type. Appl. Algebra Eng. Commun. Comput. 20, 207–259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Seiler, W.M.: A combinatorial approach to involution and \(\delta \)-regularity II: Structure analysis of polynomial modules with Pommaret bases. Appl. Algebra Eng. Commun. Comput. 20, 261–338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Seiler, W.M.: Involution: The Formal Theory of Differential Equations and Its Applications in Computer Algebra. Algorithms and Computation in Mathematics, vol. 24. Springer, Berlin (2009)

    Google Scholar 

  40. Stanley, R.P.: Hilbert functions of graded algebras. Adv. Math. 28, 57–83 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sombra, M.: A sparse effective Nullstellensatz. Adv. Appl. Math. 22(2), 271–295 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Valla, G.: Problems and results on Hilbert functions of graded algebras. Prog. Math. 166, 293–344 (1998)

    MathSciNet  MATH  Google Scholar 

  43. Zharkov, A.Y., Blinkov, Y.A.: Involutive approach to investigating polynomial systems. Math. Comput. Simul. 42(4–6), 323–332 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments which helped us to improve the manuscript. The third author received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. H2020-FETOPEN-2015-CSA 712689.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hashemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binaei, B., Hashemi, A. & Seiler, W.M. A Pommaret bases approach to the degree of a polynomial ideal. AAECC 29, 283–301 (2018). https://doi.org/10.1007/s00200-017-0342-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-017-0342-y

Keywords

Mathematics Subject Classification

Navigation