Comparative statics and heterogeneity

  • Finn Christensen
Research Article


This paper elucidates the role played by the heterogeneity of interactions between the endogenous variables of a model in determining the model’s behavior. It is known that comparative statics are well-behaved if these interactions are relatively small, but the formal condition imposed on the Jacobian which typically captures this idea–diagonal dominance–ignores the distribution of the interaction terms. I provide a new condition on the Jacobian—mean positive dominance—which better captures a trade-off between the size and heterogeneity of interaction terms. In accord with Samuelson’s (Foundations of economic analysis, Oxford University Press, London, 1947) correspondence principle, I also show that mean positive dominance yields stability and uniqueness results. I apply the results to provide new, or to generalize known, comparative statics results in the following settings: optimization problems, platform monopoly, normality, differentiable games including Cournot oligopoly, and competitive exchange economies.


Comparative statics Mean positive dominance B-matrix Correspondence principle Cournot oligopoly Normal goods 

JEL Classification

C6 C72 D11 D4 D5 



I am grateful to the editors and two anonymous reviewers whose comments helped improve the paper. Any errors are mine.


  1. Acemoglu, D., Jensen, M.K.: Aggregate comparative statics. Game. Econ. Behav. 81, 27–49 (2013)CrossRefGoogle Scholar
  2. Amir, R.: Supermodularity and complementarity in economics: an elementary survey. South. Econ. J. 71(3), 636–660 (2005)CrossRefGoogle Scholar
  3. Amir, R., Castro, L.D.: Nash equilibrium in games with quasi-monotonic best-responses. J. Econ. Theory 172, 220–246 (2017)CrossRefGoogle Scholar
  4. Amir, R., Lambson, V.E.: On the effects of entry in cournot markets. Rev. Econ. Stud. 67(2), 235–254 (2000)CrossRefGoogle Scholar
  5. Amir, R., Lazzati, N.: Endogenous information acquisition in Bayesian games with strategic complementarities. J. Econ. Theory 163, 684–698 (2016)CrossRefGoogle Scholar
  6. Barthel, A.C., Sabarwal, T.: Directional monotone comparative statics. Econ. Theory (2017). Google Scholar
  7. Brown, D.J., Matzkin, R.L.: Testable restrictions on the equilibrium manifold. Econometrica 68(6), 1529–1539 (1996)CrossRefGoogle Scholar
  8. Brown, D.J., Shannon, C.: Uniqueness, stability, and comparative statics in rationalizable Walrasian markets. Econometrica 68(6), 1529–1539 (2000)CrossRefGoogle Scholar
  9. Carnicer, J., Goodman, T., Peña, J.: Linear conditions for positive determinants. Linear Algebra Appl. 292(1), 39–59 (1999)CrossRefGoogle Scholar
  10. Chipman, J.S.: An empirical implication of Auspitz–Lieben–Edgeworth–Pareto complementarity. J. Econ. Theory 14(1), 228–231 (1977)CrossRefGoogle Scholar
  11. Christensen, F.: A necessary and sufficient condition for a unique maximum with an application to potential games. Econ. Lett. 161, 120–123 (2017)CrossRefGoogle Scholar
  12. Christensen, F., Cornwell, C.R.: A strong correspondence principle for smooth, monotone environments. Working Papers 2016-05, Towson University, Department of Economics. (2016). Accessed 2 Jan 2018
  13. Corchón, L.C.: Comparative statics for aggregative games the strong concavity case. Math. Soc. Sci. 28(3), 151–165 (1994)CrossRefGoogle Scholar
  14. Cosandier, C., Garcia, F., Knauff, M.: Price competition with differentiated goods and incomplete product awareness. Econ. Theory (2017). Google Scholar
  15. Dierker, E.: Two remarks on the number of equilibria of an economy. Econometrica 40(5), 951–953 (1972)CrossRefGoogle Scholar
  16. Dixit, A.: Comparative statics for oligopoly. Int. Econ. Rev. 27(1), 107–122 (1986)CrossRefGoogle Scholar
  17. Echenique, F.: Comparative statics by adaptive dynamics and the correspondence principle. Econometrica 70(2), 833–844 (2002)CrossRefGoogle Scholar
  18. Gale, D., Nikaido, H.: The Jacobian matrix and global univalence of mappings. Math. Ann. 159(2), 81–93 (1965)CrossRefGoogle Scholar
  19. Hoernig, S.H.: Existence of equilibrium and comparative statics in differentiated goods cournot oligopolies. Int. J. Ind Organ. 21(7), 989–1019 (2003)CrossRefGoogle Scholar
  20. Jensen, M.K.: Aggregative games and best-reply potentials. Econ. Theory 43(1), 45 (2010)CrossRefGoogle Scholar
  21. Jinji, N.: Comparative statics for oligopoly: a generalized result. Econ. Lett. 124(1), 79–82 (2014)CrossRefGoogle Scholar
  22. Kehoe, T.J.: An index theorem for general equilibrium models with production. Econometrica 48(5), 1211–1232 (1980)CrossRefGoogle Scholar
  23. Kolstad, C.D., Mathiesen, L.: Necessary and sufficient conditions for uniqueness of a cournot equilibrium. Rev. Econ. Stud. 54(4), 681–690 (1987)CrossRefGoogle Scholar
  24. Malinvaud, E.: Lectures on Microeconomic Theory. American Elsevier Publishing Co., New York (1972)Google Scholar
  25. Mas-Colell, A., Whinston, M.D., Green, J.R., et al.: Microeconomic Theory. Oxford University Press, New York (1995)Google Scholar
  26. Milgrom, P., Roberts, J.: The economics of modern manufacturing: technology, strategy, and organization. Am. Econ. Rev. 80(3), 511–528 (1990)Google Scholar
  27. Milgrom, P., Shannon, C.: Monotone comparative statics. Econometrica 62(1), 157–180 (1994)CrossRefGoogle Scholar
  28. Milnor, J.W.: Topology from the Differentiable Viewpoint. University Press of Virginia, Charlottesville (1965)Google Scholar
  29. Monaco, A.J., Sabarwal, T.: Games with strategic complements and substitutes. Econ. Theory 62(1–2), 65–91 (2016)CrossRefGoogle Scholar
  30. Nachbar, J.H.: General equilibrium comparative statics. Econometrica 70(5), 2065–2074 (2002)CrossRefGoogle Scholar
  31. Peña, J.M.: A class of p-matrices with applications to the localization of the eigenvalues of a real matrix. SIAM J. Matrix Anal. Appl. 22(4), 1027–1037 (2001)CrossRefGoogle Scholar
  32. Pollak, R.A.: Interdependent preferences. Am. Econ. Rev. 66(3), 309–320 (1976)Google Scholar
  33. Prokopovych, P., Yannelis, N.C.: On strategic complementarities in discontinuous games with totally ordered strategies. J. Math. Econ. 70, 147–153 (2017)CrossRefGoogle Scholar
  34. Quah, J.K.H.: The comparative statics of constrained optimization problems. Econometrica 75(2), 401–431 (2007)CrossRefGoogle Scholar
  35. Quah, J.K.H., Strulovici, B.: Comparative statics, informativeness, and the interval dominance order. Econometrica 77(6), 1949–1992 (2009)CrossRefGoogle Scholar
  36. Reynolds, S.S., Rietzke, D.: Price caps, oligopoly, and entry. Econ. Theory (2016). Google Scholar
  37. Rochet, J.C., Tirole, J.: Platform competition in two-sided markets. J. Eur. Econ. Assoc. 1(4), 990–1029 (2003)CrossRefGoogle Scholar
  38. Rochet, J.C., Tirole, J.: Two-sided markets: a progress report. Rand J. Econ. 37(3), 645–667 (2006)CrossRefGoogle Scholar
  39. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33(3), 520–534 (1965)CrossRefGoogle Scholar
  40. Roy, S., Sabarwal, T.: On the (non-)lattice structure of the equilibrium set in games with strategic substitutes. Econ. Theory 37(1), 161 (2008)CrossRefGoogle Scholar
  41. Roy, S., Sabarwal, T.: Monotone comparative statics for games with strategic substitutes. J. Math. Econ. 46(5), 793–806 (2010)CrossRefGoogle Scholar
  42. Samuelson, P.: Foundations of Economic Analysis. Oxford University Press, London (1947)Google Scholar
  43. Simon, C.P.: Some fine-tuning for dominant diagonal matrices. Econ. Lett. 30(3), 217–221 (1989)CrossRefGoogle Scholar
  44. Topkis, D.M.: Supermodularity and Complementarity. Princeton University Press, Princeton (1998)Google Scholar
  45. Varian, H.R.: A third remark on the number of equilibria of an economy. Econometrica 43(5–6), 985 (1975)CrossRefGoogle Scholar
  46. Villas-Boas, J.M.: Comparative statics of fixed points. J. Econ. Theory 73(1), 183–198 (1997)CrossRefGoogle Scholar
  47. Vives, X.: Nash equilibrium with strategic complementarities. J. Math. Econ. 19(3), 305–321 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of EconomicsTowson UniversityTowsonUSA

Personalised recommendations