Genant HK, Cooper C, Poor G et al (1999) Interim report and recommendations of the World Health Organization taskforce for osteoporosis. Osteoporos Int 10:259–264. https://doi.org/10.1007/s001980050224
CAS
Article
PubMed
Google Scholar
Cosman F, Beur SJ, LeBoff MS et al (2014) National Osteoporosis Foundation (2013) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporosis Int 25:2359–2381. https://doi.org/10.1007/s00198-014-2794-2
CAS
Article
Google Scholar
National Osteoporosis Foundation (2002) America’s bone health: the state of osteoporosis and low bone mass in our nation. National Osteoporosis Foundation, Washington (DC)
International Osteoporosis Foundation (2020) The facts about osteoporosis and its impact. http://www.osteofound.org/press_centre/fact_sheet.html. Accessed 3 May 2021
Lewiecki EM, Wright NC, Curtis JR et al (2018) Hip fracture trends in the United States, 2002 to 2015. Osteoporos Int 29:717–722. https://doi.org/10.1007/s00198-017-4345-0
Article
PubMed
Google Scholar
Ebina K, Hirao M, Tsuboi H et al (2020) Effects of prior osteoporosis treatment on early treatment response of romosozumab in patients with postmenopausal osteoporosis. Bone 140:115574. https://doi.org/10.1016/j.bone.2020.115574
CAS
Article
PubMed
Google Scholar
Tominaga A, Wada K, Okazaki K et al (2021) Early clinical effects, safety, and predictors of the effects of romosozumab treatment in osteoporosis patients: one-year study. Osteoporosis Int 1–11. https://doi.org/10.1007/s00198.021.05925.3
Cosman F, Crittenden DB, Adachi JD et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375:1532–1543. https://doi.org/10.1056/NEJMoa1607948
CAS
Article
PubMed
Google Scholar
Baron R, Rawadi G (2007) Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148(6):2635–2643. https://doi.org/10.1210/en.2007-0270
CAS
Article
PubMed
Google Scholar
Ominsky MS, Vlasseros F, Jolette J et al (2010) Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res 25:948–959. https://doi.org/10.1002/jbmr.14
CAS
Article
PubMed
Google Scholar
Li X, Warmington KS, Niu QT et al (2011) Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. J Bone Miner Res 25:2647–2656. https://doi.org/10.1002/jbmr.182
CAS
Article
Google Scholar
Bandeira L, Lewiecki EM, Bilezikian JP (2017) Romosozumab for the treatment of osteoporosis. Expert Opin Biol Ther 17:255–263. https://doi.org/10.1080/14712598.2017.1280455
CAS
Article
PubMed
Google Scholar
Igarashi Y, Lee MY, Matsuzaki S (2002) Acid phosphatase as markers of bone metabolism. J Chromatogr B 781:345–358. https://doi.org/10.1016/s1570-0232(02)00431-2
CAS
Article
Google Scholar
Eastell R, Krege JH, Chen P, Glass EV, Reginster JY (2006) Development of analgorism for using P1NP to monitor treatment of patients with teriparatide. Curr Med Res Opin 22:61–66. https://doi.org/10.1185/030079905X75096
CAS
Article
PubMed
Google Scholar
Fogelman I, Blake GM (2000) Different approaches to bone densitometry. J Nucl Med 41:2015–2025
CAS
PubMed
Google Scholar
Ominsky MS, Brown DL, Van G et al (2015) Differential temporal effects of sclerostin antibody and parathyroid hormone on cancellous and cortical bone and quantitative differences in effects on the osteoblast lineage in young intact rats. Bone 81:380–391. https://doi.org/10.1016/j.bone.2015.08.007
CAS
Article
PubMed
Google Scholar
Shimizu T, Atira K, Murota E et al (2021) Effects after starting or switching from bisphosphonate to romosozumab or denosumab in Japanese postmenopausal patients. J Bone Miner Metab 13:1–8. https://doi.org/10.1007/s00774-021-01226-1
CAS
Article
Google Scholar
Popp AW, Varathan N, Buffat H et al (2018) Bone mineral density changes after 1 year of denosumab discontinuation in postmenopausal women with long-term denosumab treatment for osteoporosis. Calcif Tissue Int 103:50–54. https://doi.org/10.1007/s00223.018.0394.4
CAS
Article
PubMed
Google Scholar
Solling ASK, Harslof T, Kaal A, Rejnmark L, Langdahl B (2016) Hypercalcemia after discontinuation of long-term denosumab treatment. Osteoporos Int 27:2383–2386. https://doi.org/10.1007/s00198.016.3535.5
Article
Google Scholar
McClung MR, Lewiecki EM, Geller ML et al (2013) Effect of denosumab on bone mineral density and biochemical markers of bone turnover: 8-year results of a phase 2 clinical trial. Osteoporos Int 24:227–235. https://doi.org/10.1007/s00198-012-2052-4
CAS
Article
PubMed
Google Scholar
Bone HG, Chapurlat R, Brandi M-L et al (2013) The effect of three or six years of denosumab exposure in women with postmenopausal osteoporosis: results from the freedom extension. J Clin Endocrinol Metab 98:4483–4492. https://doi.org/10.1210/jc.2013-1597
CAS
Article
PubMed
PubMed Central
Google Scholar
Takada J, Dinavahi R, Miyauchi A et al (2020) Relationship between P1NP, a biochemical marker of bone turnover, and bone mineral density in patients transitioned from alendronate to romosozumab or teriparatide: a post hoc analysis of the STRUCTURE trial. J Bone Miner Metab 38:310–315. https://doi.org/10.1007/s00774.019.01057.1
CAS
Article
PubMed
Google Scholar
Bone HG, Hosking D, Devogelaer JP et al (2004) Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med 350:1189–1199
CAS
Article
Google Scholar
Bauer DC, Garnero P, Hochberg MC et al (2006) Pre-treatment bone turnover and fracture efficacy of alendronate: the fracture intervention trial. J Bone Miner Res 21:292–299. https://doi.org/10.1359/JBMR.051018
CAS
Article
PubMed
Google Scholar
Fogelman I, Ribot C, Smith R et al (2000) Risedronate reverse bone loss in postmenopausal women with low bone mass: results from a multinational, double-blind, placebo-controlled trail. J Clin Endocrinol Metab 85:1895–1900. https://doi.org/10.1210/jcem.85.5.6603
CAS
Article
PubMed
Google Scholar