Risk of fragility fractures in obesity and diabetes: a retrospective analysis on a nation-wide cohort

Abstract

Summary

This study aims to investigate the role of obesity and diabetes on bone health in a nation-wide cohort of women with high risk of fracture.

Introduction

The role of obesity and diabetes on fracture risk is yet poorly understood. Body mass index (BMI) and bone mineral density (BMD) are strongly correlated; however, patients with elevated BMI are not protected against fractures, configuring the obesity paradox. A similar controversial association has been also found in diabetic patients. Herein, we present a retrospective analysis on 59,950 women.

Methods

Using a new web-based fracture risk-assessment tool, we have collected demographic (including BMI), densitometric, and clinical data (including history of vertebral or hip and non-vertebral, non-hip fractures, presence of comorbidities). We performed a propensity score generation with 1:1 matching for patients in the obese (BMI ≥ 30) and non-obese (BMI < 30) groups, in the diabetics and non-diabetics. Propensity score estimates were estimated using a logistic regression model derived from the clinical variables: age, lumbar spine T-score, and femoral neck T-score.

Results

We found an association between diabetes and fractures of any kind (OR 1.3, 95% CI 1.1–1.4 and 1.3, 95% CI 1.2–1.5 for vertebral or hip fractures and non-vertebral, non-hip fractures, respectively). Obesity, on the other hand, was significantly associated only with non-vertebral, non-hip fractures (OR 1.3, 95% CI 1.1–1.6). To estimate the individual effect of obesity and diabetes on bone health, we ran sensitivity analyses which included obese non-diabetic patients and non-obese diabetic patients, respectively.

Conclusions

Non-obese diabetics had the highest risk of vertebral or hip fracture, whereas obese non-diabetics predominantly had non-vertebral, non-hip fracture’s risk. These results should raise awareness in clinical practice when evaluating diabetic and/or obese patients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Kanis JA, Melton LJ, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res Off J Am Soc Bone Miner Res 9:1137–1141. https://doi.org/10.1002/jbmr.5650090802

    CAS  Article  Google Scholar 

  2. 2.

    Hernlund E, Svedbom A, Ivergård M et al (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136. https://doi.org/10.1007/s11657-013-0136-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Rossini M, Adami S, Bertoldo F, Diacinti D, Gatti D, Giannini S, Giusti A, Malavolta N, Minisola S, Osella G, Pedrazzoni M, Sinigaglia L, Viapiana O, Isaia GC (2016) Guidelines for the diagnosis, prevention and management of osteoporosis. Reumatismo 68:1–39. https://doi.org/10.4081/reumatismo.2016.870

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Kanis JA, Hans D, Cooper C et al (2011) Interpretation and use of FRAX in clinical practice. Osteoporos Int 22:2395–2411. https://doi.org/10.1007/s00198-011-1713-z

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Adami S, Bertoldo F, Gatti D, Minisola G, Rossini M, Sinigaglia L, Varenna M (2013) Treatment thresholds for osteoporosis and reimbursability criteria: perspectives associated with fracture risk-assessment tools. Calcif Tissue Int 93:195–200. https://doi.org/10.1007/s00223-013-9748-0

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Schwartz AV (2016) Epidemiology of fractures in type 2 diabetes. Bone 82:2–8. https://doi.org/10.1016/j.bone.2015.05.032

    Article  PubMed  Google Scholar 

  7. 7.

    de Waard EAC, Koster A, Melai T et al (2016) The association between glucose metabolism status, diabetes severity and a history of fractures and recent falls in participants of 50 years and older-the Maastricht study. Osteoporos Int 27:3207–3216. https://doi.org/10.1007/s00198-016-3645-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Mantovani A, Sani E, Fassio A, Colecchia A, Viapiana O, Gatti D, Idolazzi L, Rossini M, Salvagno G, Lippi G, Zoppini G, Byrne CD, Bonora E, Targher G (2019) Association between non-alcoholic fatty liver disease and bone turnover biomarkers in post-menopausal women with type 2 diabetes. Diabetes Metab 45:347–355. https://doi.org/10.1016/j.diabet.2018.10.001

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 18:427–444. https://doi.org/10.1007/s00198-006-0253-4

    CAS  Article  Google Scholar 

  10. 10.

    Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL, IOF bone and diabetes working group (2017) Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol 13(4):208–219. https://doi.org/10.1038/nrendo.2016.153

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Merlotti D, Gennari L, Dotta F, Lauro D, Nuti R (2010) Mechanisms of impaired bone strength in type 1 and 2 diabetes. Nutr Metab Cardiovasc Dis 20(9):683–690. https://doi.org/10.1016/j.numecd.2010.07.008

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Neumann T, Lodes S, Kästner B, Franke S, Kiehntopf M, Lehmann T, Müller UA, Wolf G, Sämann A (2014) High serum pentosidine but not esRAGE is associated with prevalent fractures in type 1 diabetes independent of bone mineral density and glycaemic control. Osteoporos Int 25:1527–1533. https://doi.org/10.1007/s00198-014-2631-7

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Compston JE, Flahive J, Hosmer DW, Watts NB, Siris ES, Silverman S, Saag KG, Roux C, Rossini M, Pfeilschifter J, Nieves JW, Netelenbos JC, March L, LaCroix AZ, Hooven FH, Greenspan SL, Gehlbach SH, Díez-Pérez A, Cooper C, Chapurlat RD, Boonen S, Anderson FA Jr, Adami S, Adachi JD, for the GLOW Investigators (2014) Relationship of weight, height, and body mass index with fracture risk at different sites in postmenopausal women: the Global Longitudinal Study of Osteoporosis in Women (GLOW). J Bone Miner Res 29:487–493. https://doi.org/10.1002/jbmr.2051

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    WHO | Obesity and overweight. In: WHO. http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 24 Nov 2017

  15. 15.

    Bosello O, Donataccio MP, Cuzzolaro M (2016) Obesity or obesities? Controversies on the association between body mass index and premature mortality. Eat Weight Disord 21:165–174. https://doi.org/10.1007/s40519-016-0278-4

    Article  PubMed  Google Scholar 

  16. 16.

    Mitchell NS, Catenacci VA, Wyatt HR, Hill JO (2011) Obesity: overview of an epidemic. Psychiatr Clin North Am 34:717–732. https://doi.org/10.1016/j.psc.2011.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Fassio A, Idolazzi L, Rossini M, Gatti D, Adami G, Giollo A, Viapiana O (2018) The obesity paradox and osteoporosis. Eat Weight Disord EWD 23:293–302. https://doi.org/10.1007/s40519-018-0505-2

    Article  PubMed  Google Scholar 

  18. 18.

    Curtis EM, Moon RJ, Harvey NC, Cooper C (2017) The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone 104:29–38. https://doi.org/10.1016/j.bone.2017.01.024

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Adami G, Rossini M, Fassio A et al (2020) Comments on Kanis et al.: algorithm for the management of patients at low, high, and very high risk of osteoporotic fractures. Osteoporos Int. https://doi.org/10.1007/s00198-020-05302-6

  20. 20.

    Reid IR, Ames RW, Evans MC, Sharpe SJ, Gamble GD (1994) Determinants of the rate of bone loss in normal postmenopausal women. J Clin Endocrinol Metab 79:950–954. https://doi.org/10.1210/jcem.79.4.7962303

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Reid IR (2010) Fat and bone. Arch Biochem Biophys 503:20–27. https://doi.org/10.1016/j.abb.2010.06.027

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Evans AL, Paggiosi MA, Eastell R, Walsh JS (2015) Bone density, microstructure and strength in obese and normal weight men and women in younger and older adulthood. J Bone Miner Res Off J Am Soc Bone Miner Res 30:920–928. https://doi.org/10.1002/jbmr.2407

    Article  Google Scholar 

  23. 23.

    Yang S, Shen X (2015) Association and relative importance of multiple obesity measures with bone mineral density: the National Health and Nutrition Examination Survey 2005-2006. Arch Osteoporos 10:14. https://doi.org/10.1007/s11657-015-0219-2

    Article  PubMed  Google Scholar 

  24. 24.

    Zhao L-J, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, Deng HW (2008) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 23:17–29. https://doi.org/10.1359/jbmr.070813

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, Pfeilschifter J, Silverman S, Díez-Pérez A, Lindsay R, Saag KG, Netelenbos JC, Gehlbach S, Hooven FH, Flahive J, Adachi JD, Rossini M, Lacroix AZ, Roux C, Sambrook PN, Siris ES, Glow Investigators (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124:1043–1050. https://doi.org/10.1016/j.amjmed.2011.06.013

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Prieto-Alhambra D, Premaor MO, Fina Avilés F, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C, Nogués X, Compston JE, Díez-Pérez A (2012) The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res Off J Am Soc Bone Miner Res 27:294–300. https://doi.org/10.1002/jbmr.1466

    Article  Google Scholar 

  27. 27.

    Sornay-Rendu E, Boutroy S, Vilayphiou N, Claustrat B, Chapurlat RD (2013) In obese postmenopausal women, bone microarchitecture and strength are not commensurate to greater body weight: the Os des Femmes de Lyon (OFELY) study. J Bone Miner Res Off J Am Soc Bone Miner Res 28:1679–1687. https://doi.org/10.1002/jbmr.1880

    CAS  Article  Google Scholar 

  28. 28.

    Sukumar D, Schlussel Y, Riedt CS, Gordon C, Stahl T, Shapses SA (2011) Obesity alters cortical and trabecular bone density and geometry in women. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 22:635–645. https://doi.org/10.1007/s00198-010-1305-3

    CAS  Article  Google Scholar 

  29. 29.

    Barbour KE, Zmuda JM, Boudreau R, Strotmeyer ES, Horwitz MJ, Evans RW, Kanaya AM, Harris TB, Bauer DC, Cauley JA (2011) Adipokines and the risk of fracture in older adults. J Bone Miner Res Off J Am Soc Bone Miner Res 26:1568–1576. https://doi.org/10.1002/jbmr.361

    CAS  Article  Google Scholar 

  30. 30.

    Corbeil P, Simoneau M, Rancourt D, Tremblay A, Teasdale N (2001) Increased risk for falling associated with obesity: mathematical modeling of postural control. IEEE Trans Neural Syst Rehabil Eng 9:126–136. https://doi.org/10.1109/7333.928572

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Stein EM, Strain G, Sinha N, Ortiz D, Pomp A, Dakin G, McMahon DJ, Bockman R, Silverberg SJ (2009) Vitamin D insufficiency prior to bariatric surgery: risk factors and a pilot treatment study. Clin Endocrinol 71:176–183. https://doi.org/10.1111/j.1365-2265.2008.03470.x

    CAS  Article  Google Scholar 

  32. 32.

    Himes CL, Reynolds SL (2012) Effect of obesity on falls, injury, and disability. J Am Geriatr Soc 60:124–129. https://doi.org/10.1111/j.1532-5415.2011.03767.x

    Article  PubMed  Google Scholar 

  33. 33.

    Nevitt MC, Cummings SR (1993) Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures. The study of Osteoporotic Fractures Research Group. J Am Geriatr Soc 41:1226–1234. https://doi.org/10.1111/j.1532-5415.1993.tb07307.x

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Janghorbani M, Van Dam RM, Willett WC, Hu FB (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166:495–505. https://doi.org/10.1093/aje/kwm106

    Article  PubMed  Google Scholar 

  35. 35.

    Janghorbani M, Feskanich D, Willett WC, Hu F (2006) Prospective study of diabetes and risk of hip fracture: the nurses’ health study. Diabetes Care 29:1573–1578. https://doi.org/10.2337/dc06-0440

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Adami.

Ethics declarations

The study was conducted according to the protocol 1876 approved by our local Ethics Committee, in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was waived because encrypted retrospective information was used.

Conflicts of interest

Maurizio Rossini reports personal fees from AbbVie, Abiogen, Eli-Lilly, Merck Sharp & Dohme, Novartis, Sanofi, UCB, outside the submitted work. Giovanni Adami, Davide Gatti, Giovanni Orsolini, Francesco Pollastri, Eugenia Bertoldo, Ombretta Viapiana, Francesco Bertoldo, Alessandro Giollo, and Davide Gatti have no conflict of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adami, G., Gatti, D., Rossini, M. et al. Risk of fragility fractures in obesity and diabetes: a retrospective analysis on a nation-wide cohort. Osteoporos Int (2020). https://doi.org/10.1007/s00198-020-05519-5

Download citation

Keywords

  • Body mass index (BMI)
  • Diabetes
  • Fractures
  • Obesity
  • Osteoporosis