Ten-year fracture risk predicted by proximal femur Hounsfield units

Abstract

Summary

Colon cancer screening occurs at younger ages than osteoporosis screening. Bone density measurements using virtual colonoscopy performed for colon cancer screening can provide an early warning sign of patients at potential risk for osteoporosis-related fractures. Earlier identification may improve treatment and potentially fracture prevention.

Introduction

Opportunistic osteoporosis screening with computed tomography colonography (CTC) offers an opportunity to capitalize on earlier colorectal cancer screening to identify patients at risk of future fractures. The purpose of this study is to evaluate 10-year fracture and specifically hip fracture risk based on Hounsfield units (HU) obtained from CTC.

Methods

We identified all CTC scans between 2004 and 2007 of patients 40 years and older with 10 years minimum follow-up. Hounsfield units were measured within the proximal femur and fractures identified via worldwide military records. Patients were stratified into two cohorts based on the presence or lack of a fracture in the wrist, spine, hip, or proximal humerus. Hounsfield unit measurements were compared between groups using Student’s t test and the HU threshold was calculated that best approximated an 80% sensitivity to optimally screen patients for fracture risk. The odds ratio, negative predictive value, 10-year incidence of fracture, and survival curves were calculated.

Results

We identified 3711 patients with 183 fractures over 10 years. The HU threshold that corresponded with an 80% sensitivity to identify fractures was 112 HU. The negative predictive value (NPV) for overall fractures and hip fractures was over 97%. The 10-year fracture incidence was higher in patients below 112 HU compared to those above for both overall fractures (6.3% vs 1.7%) and hip fractures (2.7% vs 0.07%). The 112 HU threshold corresponds with an odds ratio for overall fracture and hip fractures of 2.5 (95% confidence interval (CI), 1.7–3.6) and 24.5 (95% CI, 3.3–175.5), respectively.

Conclusion

In the 10 years following CTC, patients who experienced a fracture had lower hip HU. Decreasing HU on CTC may be an early warning sign of fracture potential.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, Dawson-Hughes B (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29:2520–2526. https://doi.org/10.1002/jbmr.2269

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Gardner MJ, Brophy RH, Demetrakopoulos D, Koob J, Hong R, Rana A, Lin JT, Lane JM (2005) Interventions to improve osteoporosis treatment following hip fracture. J Bone Joint Surg Am 87:3–7. https://doi.org/10.2106/JBJS.D.02289

    Article  PubMed  Google Scholar 

  3. 3.

    Miller AN, Lake AF, Emory CL (2015) Establishing a fracture liaison service: an orthopaedic approach. J Bone Joint Surg Am 97:675–681. https://doi.org/10.2106/JBJS.N.00957

    Article  PubMed  Google Scholar 

  4. 4.

    Majumdar SR, McAlister FA, Johnson JA et al (2014) Critical impact of patient knowledge and bone density testing on starting osteoporosis treatment after fragility fracture: secondary analyses from two controlled trials. Osteoporos Int 25:2173–2179. https://doi.org/10.1007/s00198-014-2728-z

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Majumdar SR, Johnson JA, McAlister FA et al (2008) Multifaceted intervention to improve diagnosis and treatment of osteoporosis in patients with recent wrist fracture: a randomized controlled trial. CMAJ 178:569–575. https://doi.org/10.1503/cmaj.070981

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Rozental TD, Makhni EC, Day CS, Bouxsein ML (2008) Improving evaluation and treatment for osteoporosis following distal radial fractures. A prospective randomized intervention. J Bone Joint Surg Am 90:953–961. https://doi.org/10.2106/JBJS.G.01121

    Article  PubMed  Google Scholar 

  7. 7.

    Bunta AD, Edwards BJ, Macaulay WB et al (2016) Own the bone, a system-based intervention, improves osteoporosis care after fragility fractures. J Bone Joint Surg Am 98:e109. https://doi.org/10.2106/JBJS.15.01494

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Sarfani S, Scrabeck T, Kearns AE, Berger RA, Kakar S (2014) Clinical efficacy of a fragility care program in distal radius fracture patients. J Hand Surg [Am] 39:664–669. https://doi.org/10.1016/j.jhsa.2014.01.009

    Article  Google Scholar 

  9. 9.

    Cranney A, Lam M, Ruhland L, Brison R, Godwin M, Harrison MM, Harrison MB, Anastassiades T, Grimshaw JM, Graham ID (2008) A multifaceted intervention to improve treatment of osteoporosis in postmenopausal women with wrist fractures: a cluster randomized trial. Osteoporos Int 19:1733–1740. https://doi.org/10.1007/s00198-008-0669-0

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Tosi LL, Gliklich R, Kannan K, Koval KJ (2008) The American Orthopaedic Associationʼs “Own the Bone” initiative to prevent secondary fractures. J Bone Joint Surg Am 90:163–173. https://doi.org/10.2106/JBJS.G.00682

    Article  PubMed  Google Scholar 

  11. 11.

    Bogoch ER, Elliot-Gibson V, Beaton DE et al (2006) Effective initiation of osteoporosis diagnosis and treatment for patients with a fragility fracture in an orthopaedic environment. J Bone Joint Surg Am 88:25–34. https://doi.org/10.2106/JBJS.E.00198

    Article  PubMed  Google Scholar 

  12. 12.

    Abrahamsen B, Van Staa T, Ariely R et al (2009) Excess mortality following hip fracture: a systematic epidemiological review. Osteoporos Int 20:1633–1650. https://doi.org/10.1007/s00198-009-0920-3

    CAS  Article  Google Scholar 

  13. 13.

    Bliuc D, Nguyen ND, Nguyen TV, Eisman JA, Center JR (2013) Compound risk of high mortality following osteoporotic fracture and refracture in elderly women and men. J Bone Miner Res 28:2317–2324. https://doi.org/10.1002/jbmr.1968

    Article  PubMed  Google Scholar 

  14. 14.

    Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521. https://doi.org/10.1001/jama.2009.50

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D (2000) Risk of mortality following clinical fractures. Osteoporos Int 11:556–561. https://doi.org/10.1007/s001980070075

    CAS  Article  Google Scholar 

  16. 16.

    Schnell S, Friedman SM, Mendelson DA, Bingham KW, Kates SL (2010) The 1-year mortality of patients treated in a hip fracture program for elders. Geriatr Orthop Surg Rehabil 1:6–14. https://doi.org/10.1177/2151458510378105

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    LeBlanc ES, Hillier TA, Pedula KL, Rizzo JH, Cawthon PM, Fink HA, Cauley JA, Bauer DC, Black DM, Cummings SR, Browner WS (2011) Hip fracture and increased short-term but not long-term mortality in healthy older women. Arch Intern Med 171:1831–1837. https://doi.org/10.1001/archinternmed.2011.447

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Black DM, Cummings SR, Karpf DB et al (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348:1535–1541

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Harris ST, Watts NB, Genant HK et al (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA 282:1344–1352

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    McClung MR, Geusens P, Miller PD et al (2001) Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med 344:333–340. https://doi.org/10.1056/NEJM200102013440503

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Cummings SR, San Martin J, McClung MR et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765. https://doi.org/10.1056/NEJMoa0809493

    CAS  Article  Google Scholar 

  22. 22.

    Black DM, Thompson DE, Bauer DC, Ensrud K, Musliner T, Hochberg MC, Nevitt MC, Suryawanshi S, Cummings SR, Fracture Intervention Trial (2000) Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. J Clin Endocrinol Metab 85:4118–4124. https://doi.org/10.1210/jcem.85.11.6953

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Chesnut CH, Skag A, Christiansen C et al (2004) Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 19:1241–1249. https://doi.org/10.1359/JBMR.040325

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822. https://doi.org/10.1056/NEJMoa067312

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK, Christiansen C, Delmas PD, Zanchetta JR, Stakkestad J, Glüer CC, Krueger K, Cohen FJ, Eckert S, Ensrud KE, Avioli LV, Lips P, Cummings SR (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 282:637–645

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mellström D, Oefjord ES, Marcinowska-Suchowierska E, Salmi J, Mulder H, Halse J, Sawicki AZ, Mitlak BH (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441. https://doi.org/10.1056/NEJM200105103441904

    CAS  Article  Google Scholar 

  27. 27.

    Dawson-Hughes B, Tosteson ANA, Melton LJ et al (2008) Implications of absolute fracture risk assessment for osteoporosis practice guidelines in the USA. Osteoporos Int 19:449–458. https://doi.org/10.1007/s00198-008-0559-5

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R, National Osteoporosis Foundation (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25:2359–2381. https://doi.org/10.1007/s00198-014-2794-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Tosteson ANA, Melton LJ, Dawson-Hughes B et al (2008) Cost-effective osteoporosis treatment thresholds: the United States perspective. Osteoporos Int 19:437–447. https://doi.org/10.1007/s00198-007-0550-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Kanis JA, Johnell O, Odén A et al (2002) Ten-year risk of osteoporotic fracture and the effect of risk factors on screening strategies. Bone 30:251–258

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Siris ES, Chen Y-T, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, Berger ML (2004) Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164:1108–1112. https://doi.org/10.1001/archinte.164.10.1108

    Article  PubMed  Google Scholar 

  32. 32.

    Sanders KM, Nicholson GC, Watts JJ, Pasco JA, Henry MJ, Kotowicz MA, Seeman E (2006) Half the burden of fragility fractures in the community occur in women without osteoporosis. When is fracture prevention cost-effective? Bone 38:694–700. https://doi.org/10.1016/j.bone.2005.06.004

    Article  PubMed  Google Scholar 

  33. 33.

    Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936. https://doi.org/10.1016/S0140-6736(02)08761-5

    Article  Google Scholar 

  34. 34.

    Gausden EB, Nwachukwu BU, Schreiber JJ, Lorich DG, Lane JM (2017) Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: a qualitative systematic review. J Bone Joint Surg Am 99:1580–1590. https://doi.org/10.2106/JBJS.16.00749

    Article  PubMed  Google Scholar 

  35. 35.

    Kanis JA, McCloskey EV, Johansson H et al (2010) Development and use of FRAX in osteoporosis. Osteoporos Int 21(Suppl 2):S407–S413. https://doi.org/10.1007/s00198-010-1253-y

    Article  PubMed  Google Scholar 

  36. 36.

    Kanis JA, McCloskey EV, Johansson H et al (2008) Case finding for the management of osteoporosis with FRAX--assessment and intervention thresholds for the UK. Osteoporos Int 19:1395–1408. https://doi.org/10.1007/s00198-008-0712-1

    CAS  Article  Google Scholar 

  37. 37.

    Kanis JA, Oden A, Johansson H, Borgström F, Ström O, McCloskey E (2009) FRAX and its applications to clinical practice. Bone 44:734–743. https://doi.org/10.1016/j.bone.2009.01.373

    Article  PubMed  Google Scholar 

  38. 38.

    Mueller DK, Kutscherenko A, Bartel H, Vlassenbroek A, Ourednicek P, Erckenbrecht J (2011) Phantom-less QCT BMD system as screening tool for osteoporosis without additional radiation. Eur J Radiol 79:375–381. https://doi.org/10.1016/j.ejrad.2010.02.008

    Article  PubMed  Google Scholar 

  39. 39.

    Gruber M, Bauer JS, Dobritz M, Beer AJ, Wolf P, Woertler K, Rummeny EJ, Baum T (2013) Bone mineral density measurements of the proximal femur from routine contrast-enhanced MDCT data sets correlate with dual-energy X-ray absorptiometry. Eur Radiol 23:505–512. https://doi.org/10.1007/s00330-012-2629-5

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Weber NK, Fidler JL, Keaveny TM, Clarke BL, Khosla S, Fletcher JG, Lee DC, Pardi DS, Loftus EV Jr, Kane SV, Barlow JM, Murthy NS, Becker BD, Bruining DH (2014) Validation of a CT-derived method for osteoporosis screening in IBD patients undergoing contrast-enhanced CT enterography. Am J Gastroenterol 109:401–408. https://doi.org/10.1038/ajg.2013.478

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Pickhardt PJ, Bodeen G, Brett A, Brown JK, Binkley N (2015) Comparison of femoral neck BMD evaluation obtained using Lunar DXA and QCT with asynchronous calibration from CT colonography. J Clin Densitom 18:5–12. https://doi.org/10.1016/j.jocd.2014.03.002

    Article  PubMed  Google Scholar 

  42. 42.

    Pickhardt PJ, Lee LJ, del Rio AM et al (2011) Simultaneous screening for osteoporosis at CT colonography: bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J Bone Miner Res 26:2194–2203. https://doi.org/10.1002/jbmr.428

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Fidler JL, Murthy NS, Khosla S, Clarke BL, Bruining DH, Kopperdahl DL, Lee DC, Keaveny TM (2016) Comprehensive assessment of osteoporosis and bone fragility with CT colonography. Radiology 278:172–180. https://doi.org/10.1148/radiol.2015141984

    Article  Google Scholar 

  44. 44.

    Ziemlewicz TJ, Maciejewski A, Binkley N, Brett AD, Brown JK, Pickhardt PJ (2016) Direct comparison of unenhanced and contrast-enhanced CT for opportunistic proximal femur bone mineral density measurement: implications for osteoporosis screening. AJR Am J Roentgenol 206:694–698. https://doi.org/10.2214/AJR.15.15128

    Article  PubMed  Google Scholar 

  45. 45.

    Ziemlewicz TJ, Binkley N, Pickhardt PJ (2015) Opportunistic Osteoporosis Screening: Addition of Quantitative CT Bone Mineral Density Evaluation to CT Colonography. J Am Coll Radiol 12:1036–1041. https://doi.org/10.1016/j.jacr.2015.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Ziemlewicz TJ, Maciejewski A, Binkley N, Brett AD, Brown JK, Pickhardt PJ (2016) Opportunistic Quantitative CT Bone Mineral Density Measurement at the Proximal Femur Using Routine Contrast-Enhanced Scans: Direct Comparison With DXA in 355 Adults. J Bone Miner Res 31:1835–1840. https://doi.org/10.1002/jbmr.2856

    CAS  Article  Google Scholar 

  47. 47.

    Marinova M, Edon B, Wolter K, Katsimbari B, Schild HH, Strunk HM (2015) Use of routine thoracic and abdominal computed tomography scans for assessing bone mineral density and detecting osteoporosis. Curr Med Res Opin 31:1871–1881. https://doi.org/10.1185/03007995.2015.1074892

    Article  PubMed  Google Scholar 

  48. 48.

    Lee SY, Kwon SS, Kim HS, Yoo JH, Kim J, Kim JY, Min BC, Moon SJ, Sung KH (2015) Reliability and validity of lower extremity computed tomography as a screening tool for osteoporosis. Osteoporos Int 26:1387–1394. https://doi.org/10.1007/s00198-014-3013-x

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Christensen DL, Nappo KE, Wolfe JA, Wade SM, Brooks DI, Potter BK, Forsberg JA, Tintle SM (2019) Proximal femur Hounsfield units on CT colonoscopy correlate with dual-energy X-ray absorptiometry. Clin Orthop Relat Res 477:850–860. https://doi.org/10.1097/CORR.0000000000000480

    Article  PubMed  Google Scholar 

  50. 50.

    Nappo KE, Christensen DL, Wolfe JA, Tintle SM (2018) Glenoid neck Hounsfield units on computed tomography can accurately identify patients with low bone mineral density. J Shoulder Elb Surg 27:1268–1274. https://doi.org/10.1016/j.jse.2017.11.008

    Article  Google Scholar 

  51. 51.

    Wagner SC, Dworak TC, Grimm PD, Balazs GC, Tintle SM (2017) Measurement of distal ulnar Hounsfield units accurately predicts bone mineral density of the forearm. J Bone Joint Surg Am 99:e38. https://doi.org/10.2106/JBJS.15.01244

    Article  PubMed  Google Scholar 

  52. 52.

    Dworak TC, Wagner SC, Nappo KE, Balazs GC, Grimm PD, Colantonio DF, Tintle SM (2018) The use of distal ulnar Hounsfield units to predict future fragility fracture risk. J Hand Surg [Am] 43:1010–1015. https://doi.org/10.1016/j.jhsa.2018.04.017

    Article  Google Scholar 

  53. 53.

    Kanis JA, Melton LJ, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141. https://doi.org/10.1002/jbmr.5650090802

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767. https://doi.org/10.1016/S0140-6736(02)08657-9

    Article  Google Scholar 

  55. 55.

    Johnell O, Kanis J (2004) Epidemiology of osteoporotic fractures. Osteoporos Int 16:S3–S7. https://doi.org/10.1007/s00198-004-1702-6

    Article  PubMed  Google Scholar 

  56. 56.

    Johnson CC, Gausden EB, Weiland AJ, Lane JM, Schreiber JJ (2016) Using Hounsfield units to assess osteoporotic status on wrist computed tomography scans: comparison with dual energy X-ray absorptiometry. J Hand Surg [Am] 41:767–774. https://doi.org/10.1016/j.jhsa.2016.04.016

    Article  Google Scholar 

  57. 57.

    Lee S, Chung CK, Oh SH, Park SB (2013) Correlation between bone mineral density measured by dual-energy X-Ray absorptiometry and Hounsfield units measured by diagnostic CT in lumbar spine. J Korean Neurosurg Soc 54:384–389. https://doi.org/10.3340/jkns.2013.54.5.384

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N (2013) Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 158:588–595. https://doi.org/10.7326/0003-4819-158-8-201304160-00003

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Schreiber JJ, Anderson PA, Rosas HG, Buchholz AL, Au AG (2011) Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Joint Surg Am 93:1057–1063. https://doi.org/10.2106/JBJS.J.00160

    Article  PubMed  Google Scholar 

  60. 60.

    Schreiber JJ, Gausden EB, Anderson PA, Carlson MG, Weiland AJ (2015) Opportunistic osteoporosis screening - gleaning additional information from diagnostic wrist CT scans. J Bone Joint Surg Am 97:1095–1100. https://doi.org/10.2106/JBJS.N.01230

    Article  PubMed  Google Scholar 

  61. 61.

    Anderson PA, Polly DW, Binkley NC, Pickhardt PJ (2018) Clinical use of opportunistic computed tomography screening for osteoporosis. J Bone Joint Surg Am 100:2073–2081. https://doi.org/10.2106/JBJS.17.01376

    Article  PubMed  Google Scholar 

  62. 62.

    Altman DG, Lausen B, Sauerbrei W, Schumacher M (1994) Dangers of using “optimal” cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst 86:829–835

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Pickhardt PJ (2017) Imaging and screening for colorectal cancer with CT colonography. Radiol Clin N Am 55:1183–1196. https://doi.org/10.1016/j.rcl.2017.06.009

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. M. Tintle.

Ethics declarations

Disclaimer

The views expressed in this article are those of the author and do not reflect the official policy of the Department of Army/Navy/Air Force, Department of Defense, or US Government.

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Level of Evidence: II

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Christensen, D.L., Nappo, K.E., Wolfe, J.A. et al. Ten-year fracture risk predicted by proximal femur Hounsfield units. Osteoporos Int (2020). https://doi.org/10.1007/s00198-020-05477-y

Download citation

Keywords

  • Computed tomography colonoscopy
  • Fracture prevention
  • Fragility fracture
  • Hip fracture
  • Opportunistic screening
  • Osteoporosis
  • Virtual colonoscopy